

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY

1 Snubber device for power electronic converters

DEVICES

From sensors to power

Power device simulation

Verification of novel designs - "more than moore"

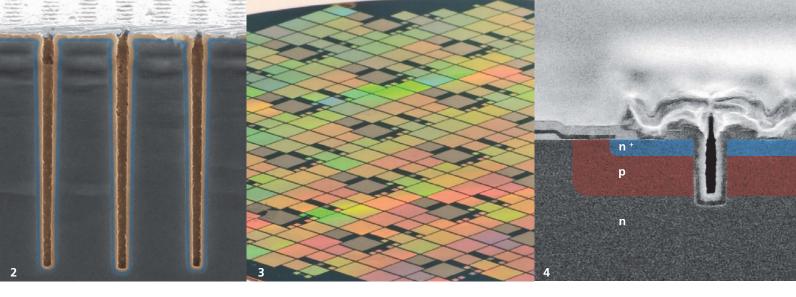
- Process simulation of device structures
 - Definition of process flow from scratch or from existing design
 - Incorporation of custom mask layouts
 - Verification of manufacturability
- Simulation of extracted device structures
 - Evaluation of electrical performance
 - Calculation of quasistatical behavior
 - Dynamic small-signal analysis
- Comparison of different design variations
 - Optimization of device design and process flow
 - Shorter development cycles due to smaller feedback loops

Device development

Customized solutions for semiconductor devices

- Novel and exclusive fabrication capabilities
 - Processing of lightly doped substrates
 - Beyond-CMOS processing
 - Alternative substrate materials, e.g. SOI, SiC, GE

Fraunhofer Institute for Integrated Systems and Device Technology IISB

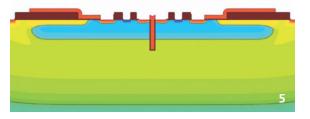

Schottkystraße 10 91058 Erlangen Germany

Contact:

Dr.-Ing. Tobias Erlbacher Phone: +49 9131 761-319 Fax: +49 9131 761-360 tobias.erlbacher@iisb.fraunhofer.de

www.iisb.fraunhofer.de

Device integration Application specific integration concepts


- Silicon carbide power devices
 - Lateral and vertical power MOSFETs
 - Sensoric for harsh environments
- Passive devices for power electronics
 - High-voltage trench capacitors and temperature-stable resistors
 - Passive devices integrated on single chip
 - Glass capacitors
- Circuit protection devices
 - Controllable active fuses
 - High-current anti-fuses
- Integrated X-ray and UV sensors

Electrical characterization

Performance and reliability characterization

- Measurement of device performance
 - Forward conduction and blocking behavior of power devices
 - High-voltage capacitors (voltage, temperature and frequency characteristics)
 - Switching properties in non-volatile memories
- Statistical device reliability predictions considering individual failure mechanisms
 - Gate oxide integrity of transistors and capacitors
 - Retention time and endurance in non-volatile memories
 - Specific device qualification according to standards, e.g. automotive
- Process evaluation based on yield analysis

- 2 High-voltage capacitors monolithically integrated into silicon using deep trench technology
- **3** Silicon wafer with monolithically integrated passive networks and test structures
- 4 LDMOS device with reduced R_{DS,on} by combining trench gate technology with planar topology

5 Implementation of process simulation for prediction of electron device parameters