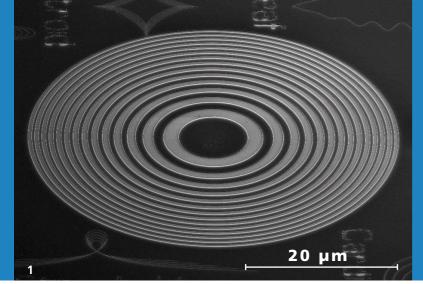


FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

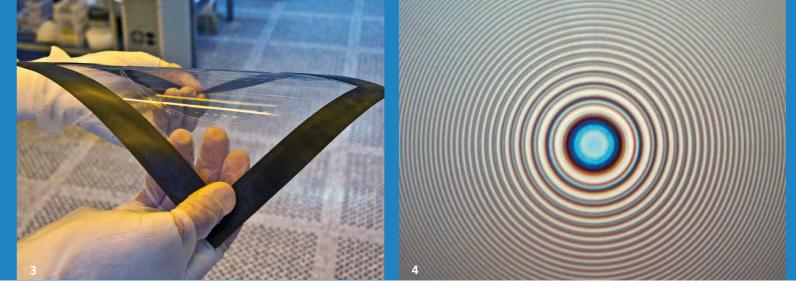
SERVICES AND SOLUTIONS

FOR LARGE AREA NANOIMPRINT TECHNOLOGY

CONTACT

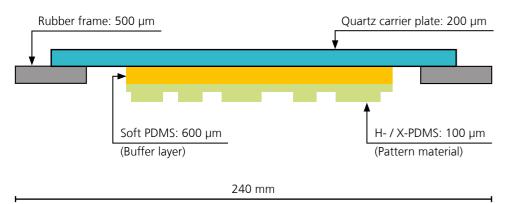

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Schottkystrasse 10 91058 Erlangen, Germany


www.iisb.fraunhofer.de

Dr. Mathias Rommel Phone: +49 9131 761 108 Fax: +49 9131 761 360 mathias.rommel@iisb.fraunhofer.c

© Fraunhofer IISB | www.iisb.fraunhofer.de



Master design and fabrication

- Pattern creation with various lithography technologies
- Conventional optical
- E-beam
- UV-enhanced nanoimprint (UV-NIL), UV-enhanced substrate conformal imprint lithography (UV-SCIL)
- Pattern formation with dry etching processes into various substrates like silicon, silica or metals
- Anti-sticking layer (Perfluorodecyltrichlorosilan mono layer) with molecular vapor deposition (MVD)

Manufacturing of PDMS stamps for UV-SCIL

- Gentle replication and separation of masters
- 100 mm, 150 mm and 200 mm master size
- Three layer approach for flexible high resolution stamps
- Thin quartz carrier plate
- Soft PDMS buffer layer
- Structure containing hard PDMS layer

Schematic cross section of a PDMS stamp for UV-SCIL

- 1 SEM image of a Fresnel lens in a silicon master manufactured with the following process:
- · e-beam lithography
- silicon dry etching
- 2 Photograph of the replication process on a 150 mm silicon wafer with a periodic pillar pattern

COVER PAGE

Flexible UV-SCIL PDMS stamp and resulting nanosized structures on a silicon wafer

Customized fabrication of large area PDMS stamps for UV-SCIL

- Stamp manufacturing
- Fast replication with high resolution
- Stamp life time
- Analysis of the interaction between the PDMS stamps and different resist materials
- Optimization of stamp life time by PDMS material variations
- Stamp inspection
- Defect control and analysis with SEM, AFM and optical methods

Process development for UV-SCIL

- Imprint process development for
- high throughput patterning
- organic and inorganic resist systems
- low defect density and defect control
- Evaluation of all kind of resists
- Structure transfer with dry etching
- Optimization of the selectivity of imprint resists to various materials
- Up to 200 mm substrate size
- Prototype patterning with SCIL on MA / BA8 SUSS tool
- Quality management
- Long term tests
- Process integration

- 3 Flexible UV-SCIL stamp consisting of the following three layers:
- 200 µm quartz carrier plate
- 600 µm soft PDMS buffer layer
- 100 µm pattern contaning H- / X- PDMS layer
- 4 Photograph of a replicated and imprinted 2.5D Fresnel lens into an epoxy based resist