

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY

1 Sample preparation for simultaneous thermal analysis at the NETZSCH STA 449 F3 Jupiter

MATERIAL CHARACTERIZATION FOR POWER ELECTRONICS PACKAGING MATERIALS

Why material charaterization?

- Get thermal and mechanical properties for Finite Element Simulations (FEM)
- Reveal best material combination for specific application
- Find adequate parameters for processing of solder- and sintering-layers, casting compounds, base plates, housings, terminals, interconnections, windings, dielectrics
- Improve life time and reliability of packaging concepts
- Reduce development time and costs

Research and applications

- Temperature dependent characterization of mechanical properties including creep-, fatigue-, fracture- and failure-investigations
- Material property mapping by spatially resolved nanoindentation at small scales Application examples: Intermetallic phases, die-attaches, bond wires, phase boundaries and spatial property gradients
- Thermal analysis of materials: Specific heat of semiconductors, die-attaches, solder pastes (evaporation of fluxes, melting temperature, solidification behavior), sintering pastes (drying and sintering time, temperature, and atmosphere), substrates, TIMs

Fraunhofer IISB

Schottkystrasse 10 91058 Erlangen Germany

Contact:

Andreas Schletz Phone: +49 9131 761 187 andreas.schletz@iisb.fraunhofer.de

www.iisb.fraunhofer.de

Assembly of test specimens

- Soldering: All kind of solders (lead-free, lead, gold, etc.)
- Silver-sintering: Representative specimens for tensile tests and nanoindentation
- Wire ultrasonic bonding and resistance welding
- Polishing, Etching, Micro machining

Tensile and compression testing

Global mechanical material parameters:

- Temperature dependent
- Elastic properties, tensile-, compressive-, yield-, creep- and fatigue strength
- · Different strain rates for time-dependent material behavior
- Stress-strain curves for nonlinear FEM
- Special data for material models, e.g. Ramberg-Osgood, Anand, Garofalo

Nanoindentation

Local, global and gradients in mechanical material parameters:

- Temperature dependent
- Elastic modulus, hardness, creep parameters
- 3D-Mapping of material properties
- Quantitative scratch and wear testing
- According to test standard ISO 14577

Simultaneous thermal analysis STA

Thermal material parameters:

- Characteristic temperatures (sintering, melting, formation of intermetallics, decomposition, oxidation, glass transition)
- Temperature dependent specific heat capacity measurements
- Analyse of peak areas in dependence of mass change
- Kinetics of reactions, for instance oxidation and sintering
- Evaluation of mass change steps, for instance leakage of organics and debinding

	Uniaxial Testing	Nanoindentation	STA
Specimen	Rectangular cross	Thin layers,	Liquid or solid objects
	section from sheets	multi layers,	
	to bulk materials	bulk materials	
Temperature	RT to 300 °C	RT to 500 °C	RT to 1500 °C
Atmosphere	N ₂ , Ar, Air	N ₂ , Air, Ar	N ₂ , Air, Ar, O ₂

2 Micro scale thick silversintered dog bone immediately before hot tensile test

3 Mechanical behavior of silversintered dog bone in tensile test at different test temperatures and sintering pressures

4 Berkovich nanoindent on a silver-sintered bond line obtained by nanomechanical microscopy