13th International Conference on Integrated Power Electronics Systems

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Milliseconds Power Cycling (PC_{msec}) driving bipolar degradation in Silicon Carbide Power Devices

- Sibasish Laha, Scientist at Fraunhofer IISB

CIPS 2024

March, 12 – 14, 2024, Düsseldorf, Germany

- Dr. Davood Momeni, Sic Product Quality Engineer at Nexperia Germany
- Dr. Jürgen Leib, Group Manager at Fraunhofer IISB
- Andreas Schletz, Founder of Schletz GmbH
- Prof. Dr.-Ing. Martin März, Director of Fraunhofer IISB
- Christian Liguda, Sr. Principal Product Quality Engineer at Nexperia Germany
- Dr. Firas Faisal, Sr. SiC Material Defects Engineer at Nexperia Germany

In collaboration with

пех

a Technisch Universitä Hamburg

Silicon Carbide (SiC)?

From meteorites to power electronics

Higher **blocking** voltages (>650 V) – Better **thermal** performance – Occupy **less space** compared to Si

The challenges!

Bipolar Degradation (BD) in SiC PN devices

Background

How to test Bipolar degradation in real world?

High current short pulse (10 ms)

Implementing high current density with controlled heating – as per literatures

Pulsed current for high current density and lower T_{vi}

Device destruction in time

The solution?

Power Cycling millisecond (PC_{msec} of 1 ms)

Replicating surge conditions while controlling device temperatures

 $T_{vj, max}$ is below maximum device temperature (175°C) $T_{vj, max}$ is below chip solder melting point (240°C)

How to do this test?

Test Concept – Bipolar Degradation

CIPS 2024 Fraunhofer

Device Technology Background

Conceptual description of the experimental DUTs

Things needed for experiment?

Sample Preparation - 1

Assembly of DUTs for test

DUT mounting

Assembly of bare dies in testbench

Bare dies mounted on testbench

Experimental Setup – 1 (Schematic)

Setup overview

Experimental Setup – 2 (Implementation)

Description of the actual testbench

Running the test!

Test Strategy

Pre/Post Characterization Results (45A) - 1

I-V Sweep measurement

IISB

Post-test failure analysis - 1

Removal of power and Schottky metal

• The DUT was measured with VHX 7000 digital microscope with 100x magnification

Pre/Post Characterization Results (45A) - 2

I-V Sweep measurement – Forward bias

CIPS 2024 Fraunhofer

IISB

Post-test failure analysis - 2

Metal Reconstruction

• The DUTs were inspected under JEOL-6610 Series Scanning Electron Microscope

Variation of V_{F (max)} over cycles

Heating V_F measurement during test

[•] Test Parameters : Load Current = 45 A (Coolant Temperature = 25 °C (Glycol + water), t_{on} = 1 ms and t_{off} = 100 ms

How much is the Bipolar vs. Thermal degradation?

Evaluating bipolar and thermal degradation

I-V Sweep with & w/o bond wire – Forward bias

Summary

Overall Results after Photoluminescence

Tested samples after metal etch and PL scan

Summary of results and findings

Highlights and lowlights based on test evaluation

Inferences and future scope

Key pointers

Image References

- 1. https://www.usgs.gov/media/images/silicon-carbide-0
- 2. https://www.etsy.com/nz/listing/992754356/colorful-silicon-carbide-crystal
- 3. https://www.researchgate.net/publication/34444231_Lanthanide_doped_wide_band_gap_semiconductors_Elektronische_Ressource_intra-4f_luminescence_and_lattice_location_studies/figures?lo=1
- 4. https://www.powersystemsdesign.com/articles/how-sic-and-gan-enable-higher-power-conversion-efficiency/138/17281
- 5. https://www.pntpower.com/tag/device/
- 6. https://www.st.com/en/power-transistors/sctw100n65g2ag.html#documentation
- 7. https://www.pntpower.com/tesla-model-3-powered-by-st-microelectronics-sic-mosfets/
- 8. K. Omote, "Crystal defects in SiC wafers and a new X-ray topography system," in Proc. Conference Name, Year, pp. Page numbers. [Online]. Available: https://api.semanticscholar.org/CorpusID:30917668
- 9. H. Tsuchida, K. Murata, T. Tawara, M. Miyazato, T. Miyazawa and K. Maeda, "Suppression of Bipolar Degradation in 4H-SiC Power Devices by Carrier Lifetime Control," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 20.1.1-20.1.4, doi: 10.1109/IEDM19573.2019.8993530
- P. Bergman, H. Lendenmann, P. Nilsson, U. Lindefelt, and P. Skytt, "Crystal Defects as Source of Anomalous Forward Voltage Increase of 4H-SiC Diodes," Materials Science Forum - MATER SCI FORUM, vol. 353-356, pp. 299-302, 2001. [Online]. Available: DOI: 10.4028/www.scientific.net/MSF.353-356.299.

Knowledge References

[1] P. Bergman, H. Lendenmann, P. Nilsson, U. Lindefelt, and P. Skytt, "Crystal Defects as Source of Anomalous Forward Voltage Increase of 4H-SiC Diodes," Materials Science Forum - MATER SCI FORUM, vol. 353-356, pp. 299-302, 2001. [Online]. Available: DOI: 10.4028/www.scientific.net/MSF.353-356.299.

[2] S. Palanisamy, T. Basler, J. Lutz, C. Künzel, L. Wehrhahn-Kilian, and R. Elpelt, "Investigation of the bipolar degradation of SiC MOSFET body diodes and the influence of current density," in 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021, pp. 1-6. [Online]. Available: DOI: 10.1109/IRPS46558.2021.9405183.10.1109/IRPS46558.2021.9405183.

[3] J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, "Semiconductor Power Devices," 2018. [Online]. Available: DOI: 10.1007/978-3-319-70917-8, pp. 280.

[4] U. Scheuermann and R. Schmidt, "Impact of solder fatigue on module lifetime in power cycling tests," in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 2011, pp. 1-10.

[5] Y. Ebihara et al., "Suppression of Bipolar Degradation in Deep-P Encapsulated 4H-SiC Trench MOSFETs up to Ultra-High Current Density," in 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2019, pp. 35–38.

[6] K. Omote, "Crystal defects in SiC wafers and a new X-ray topography system," in Proc. Conference Name, Year, pp. Page numbers. [Online]. Available: <u>https://api.semanticscholar.org/CorpusID:30917668</u>

[7] S. Palanisamy, J. Kowalsky, J. Lutz, T. Basler, R. Rupp, and J. Moazzami-Fallah, "Repetitive surge current test of SiC MPS diode with load in bipolar regime," in 2018 IEEE 30th International Symposium

Thank You for your attention

Contact

Vehicle Eletronics – Test & Reliability

Sibasish Laha, Scientific Research Associate Tel. +49 9131 761-478 sibasish.laha@iisb.fraunhofer.de

Fraunhofer IISB Schottkystraße 10 91058 Erlangen www.iisb.fraunhofer.de

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Fraunhofer

IISB

Test & Reliability

