

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Modified Approach for the Rainflow Counting Analysis of Temperature Load Signals in Power Electronics Modules

CIPS 2024 | March 12-14 | Düsseldorf, Germany

<u>Sebastian A. Letz</u>^a, Dawei Zhao^a, Jürgen Leib^a, Bernd Eckardt^{a,b}, and Martin März^{a,b} ^aFraunhofer-Institute for Integrated Systems and Device Technology, 91058 Erlangen, Germany ^bFriedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Power Electronics, 90429 Nürnberg, Germany

Introduction Rainflow Counting Basics

What is *Rainflow Counting*?

• Algorithm to identify damage relevant "thermal cycles" and their corresponding characteristic properties (e.g. ΔT_j , $T_{j,m}$, t_{on})

Chip Temperature-Time Profile

Rainflow Counting Analysis (RCA)

*Shinde, Vaibhav & Jha, Jyoti & Tewari, Asim & Miashra, Sushil. (2018). Modified Rainflow Counting Algorithm for Fatigue Life Calculation. 10.1007/978-981-10-6002-1_30

Introduction Rainflow Counting Basics

What is a damage relevant (thermal) cycle?

- Original: A cycle in <u>stress- or strain-time</u> signals that produces a <u>closed mechanical stress-strain hysteresis loop</u> in a <u>uniaxial fatigue</u> <u>test</u> → Uniaxial fatigue damage equation
- In power electronics: Application to chip <u>temperature-time</u> signals: $\varepsilon_{th} = \alpha \Delta T \rightarrow CTE$ -Mismatch \rightarrow Cyclic stress and strain \rightarrow Power cycling damage equation
- Typical failure mechanisms: Bond wire lift-off, Solder/sinter fatigue

Lemaitre J., Desmorat R. Engineering Damage Mechanics. Springer-Verlag Berlin Heidelberg 2005. ISBN 3-540-21503-4.

Thermal Stresses in Power Packages

C.C.

Bond wire lift-off*

Solder fatigue

*S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, "Condition Monitoring for Device Reliability in Power Electronic Converters: A Review," in *IEEE Transactions on Power Electronics*, vol. 25, no. 11, pp. 2734-2752, Nov. 2010, doi: 10.1109/TPEL.2010.2049377.

Introduction Rainflow Counting Basics

How does Rainflow Counting work?

- Filter temperature-time signal for local extreme values
- Apply 4-Point-Criterion to extreme value signal

 $|x_{n-1} - x_n| \ge |x_n - x_{n+1}| \le |x_{n+1} - x_{n+2}|$ n = 2, 3, 4, ..., N - 2

- Count and remove cycle, if criterion is met
- If not, go one point ahead
- Repeat until no cycles can be found anymore
- Take residue into account: Half or Simple Cycles or both

Introduction Damage and Lifetime Calculation

Basic calculation procedure

• Calculation of damage per drive with Palmgren-Miner Rule

Counted cycles at load i from temperature profile

$$D = \sum_{i=1}^{p} \frac{n_i}{N_{f_i}} = \sum_{i=1}^{p} n_i \left(N_{f,i}^{63\%} \sqrt[\beta]{-ln(1-F)} \right)^{-1}$$

Rearranged Weibull CDF
Bearable cycles at load i (Lifetime model)

• Calculation of number of drives by 1/D and corresponding lifetime

Temperature profile duration
Damage for a single drive (upper equation)

Introduction Motivation

Observation in many lifetime calculations

- Very strong impact of residue on predicted lifetime
- Sometimes larger differences between residue processing methods

Experiments Variable

Thought Experiment

- Imagine two consecutive mission profile drives and consider both as a new single mission profile
- Number of total drives to failure must halve and lifetime in hours must remain constant – if counting method (and residue processing) is correct
- Study of the profile length k influence on lifetime
- Artificial extension of profile with themselves k-times

Experiments **Parameters**

Effect of further parameters

Physics of failure model (Power Cycling Model) ٠

Model	Equation	Stressors
LESIT ¹	$N_f = a\Delta T_j^{-n} e^{\frac{E_A}{k_B T_{j,m}}}$	$\Delta T_j, T_{j,m}$
CIPS08 ²	$N_{f} = K\Delta T_{j}^{\beta_{1}} e^{\frac{\beta_{2}}{T_{j}+273}} t_{on}^{\beta_{3}} I^{\beta_{4}} V^{\beta_{5}} D^{\beta_{6}}$	$\Delta T_j, T_j, t_{on}$
SKiM93 ³	$N_{f} = A_{0}A_{1}^{e} \frac{-(\Delta T_{j} - T_{0})}{\lambda} \Delta T_{j}^{\alpha - e} \frac{-(\Delta T_{j} - T_{0})}{\lambda} e^{\frac{E_{A}}{k_{B}T_{j,m}}} \frac{C + t_{on}^{\gamma}}{C + 2^{\gamma}} k_{t}$	$\Delta T_j, T_{j,m}, t_{on}$

¹M. Held, P. Jacob, G. Nicoletti, P. Scacco and M. - -H. Poech, "Fast power cycling test of IGBT modules in traction application," Proceedings of Second International Conference on Power Electronics and Drive Systems, Singapore, 1997, pp. 425-430 vol.1, doi: 10.1109/PEDS.1997.618742.

²R. Bayerer, T. Herrmann, T. Licht, J. Lutz and M. Feller, "Model for Power Cycling lifetime of IGBT Modules - various factors influencing lifetime," 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 2008, pp. 1-6.

³https://www.semikron-danfoss.com/dl/service-support/downloads/download/semikron-application-note-power-cycle-model-for-igbt-product-lines-en-2021-08-24-rev-01/

Mission Profile (IGBT T_i vs. t)

٠

Results Without Residue Processing (raw)

Observations

- Normalized lifetime results •
- Decrease and convergence with ٠ increasing profile length
- Change in lifetime from length 64 to 128 ٠ is less than 1 % for all combinations
- Difference between initial and converged ٠ prediction depends on model and profile

 $t_f^r(k)$

 $t_f^r =$

Results

Without Residue Processing (raw)

Rainflow Counting Result Analysis

- Additional cycles are identified in the longer profiles
- Highest ΔT_j and t_{on} values \rightarrow decrease of lifetime with
- Identification of additional cycles decreases with increasing profile length → lifetime saturates

Results Half Cycle Residue Processing (half)

Observations

- Normalized lifetime based on converged result without residue processing
- Converging trends towards the lifetime without residue processing
- Converged results are very close and sometimes equal to the converged results without residue processing
- Convergence trend is mainly in upwards direction. Thus, results at k1 = 1 underestimate the lifetime in most cases.

 $t_{\ell}^{n}(k)$

 $t_f^h =$

Results Simple Cycle Residue Processing (simple)

Observations

- Normalized lifetime based on converged result without residue processing
- Converging trends towards the lifetime without residue processing
- Converged results are very close and sometimes equal to the converged results without residue processing
- Convergence trend is mainly in upwards ٠ direction. Thus, results at k1 = 1 underestimate the lifetime in most cases.

 $t_f^s(k)$

 $t_f^s =$

Results

Both Residue Processing Methods (simple + half)

$$t_f^{sh} = \frac{t_f^{sh}(k)}{t_f^r(k=128)}$$

Observations

- Combined residue processing variant produces the most conservative lifetime estimation at k1 = 1
- CIPS08 model, deviations of more than 60 % can be observed.
- Also, the SKiM93 model shows over -20 % and even the
- LESIT-Var model yields up to 10 % difference to the converged results

Results

Simple Cycle Residue Processing (simple)

Rainflow Counting Result Analysis

- Damage weight of the thermal cycles identified by RCA and simple-cycle counting from the Motorway profile for the SKiM93 model
- The highest impact of around 30 % is obtained for the simple-cycle residue in the profile with k1 = 1
- All other single cycles produce significantly less damage in the range of < 5 %.
- In case of the longer profile with k8 = 128, the effect of the simple-cycle residue is reduced to a level of < 1 %

Results Power Cycling Lifetime Model

Time-dependence

- CIPS08 model reduces the predicted lifetime significantly more for larger heating times than the SKiM93 model.
- Stronger deviations between the initial and the converged result can be explained for the CIPS08 model.
- The remaining behavior differences come from the mean temperature and the temperature amplitude terms in the models.

Summary & Conclusions Modified Rainflow Counting Analysis

- Lifetimes predicted with different residue processing methods may vary, depending on the sensitivity of the lifetime model and the temperature profile.
- There is no general accurate residue processing method field experience can show!
- The weaker the heating time dependence in the longer duration range, the less lifetime variance will be generated.
- Lifetime predictions converge to a unique result, regardless of which method has been selected, if the temperature profile length is artificially increased by multiple concatenation with themselves to balance out the total residue weighting.
- A convergence study of the predicted lifetime over the profile length can minimize these uncertainties.

Fraunhofer IISB

Fraunhofer Institute for Integrated Systems and Device Technology IISB Dr. Sebastian A. Letz Schottkystrasse 10 91058 Erlangen, Germany Tel. +49 9131 761-619 www.iisb.fraunhofer.de Sebastian.Letz@iisb.fraunhofer.de

Fraunhofer IISB Fraunhofer Institute for Integrated Systems and Device Technology IISB $\overline{\mathbb{A}}$ Ō

Results Simple Cycle Residue Processing (simple)

Rainflow Counting Result Analysis

- Residue among the highest thermal loads
- At a profile length of k1 = 1, their impact on the lifetime prediction is significant

