LOCK-IN-THERMOGRAPHY
NON-DESTRUCTIVE LOCALIZATION OF ELECTRIC ACTIVE DEFECTS

Description of Lock-In-Thermography analysis

- Detecting of failed power electronic devices such as IGBTs, MOSFETs, diodes and resistors
- Analysis of short circuits, ESD defects, oxide damages, edge termination defects, avalanche break down, whiskers and electrical conductive contamination
- High sensitivity for hot spot detection with a heat dissipation in the μW range
- 2D/3D defect localization for further destructive analysis to identify the failure mechanism

Special features

- Measurement voltage from mV up to 10 kV
- Decapsulation of mold compounds and silicone gels
- Chemical removal of chip topside metallization and contacts, for instance bond wires and ribbons out of different materials
- Follow up investigations such as cross-sections, scanning electron microscopy, micro sections with focused ion beam
- Interpretation of test results and failure mechanisms
- Consultancy on the different investigated failure modes, for instance chip damage due to improper bond wire process parameters
Analysis principle

- The device under test is pulsed with the rectangular voltage by arbitrary Lock-In-Frequency (typical: 1 Hz to 25 Hz)
- Electrical defect dissipate thermal power
- Thermal power heats up the surface
- Measurement of infrared signal with infrared camera
- Acquisition of amplitude image as well as resulting time dependent step response (phase image)

Advantages

- Differential measurement principle
- Best suited for different emission coefficients of the device surface materials
- No influence of the ambient (temperature, reflections)
- Three different zoom lenses to investigate structures from complete power module to single IGBT cells

Application example

- After fabrication, a power module failed the final electrical quality test, for instance gate-emitter leakage current
- Lock-In-Thermography helps to detect which semiconductor is responsible for the leakage current and determines the exact position of the defect on the device
- Next step consists of removing bond wires and aluminum-metalization of the semiconductor followed by a second Lock-In-Thermography analysis to get the micro scale location of the defect
- An additional investigation can be a focused ion beam investigation with scanning electron microscopy to detect the cause of failure, for instance damaged gate structure