WIRE BONDING
TOPSIDE CONNECTION FOR SEMICONDUCTORS

Research fields

- New materials for bond wires like copper, composites or alloys
- Improvement of application's life time by bonding parameters, geometry, material and others
- Metalization and surface optimization of semiconductors for best bondability
- Cleaning process to achieve a reliable bond connection
- Correlation between bonding parameters and lifetime using power cycling tests to lifetime

Our services

- Aluminum and copper wedge-wedge-bonding with diameters from 100 µm to 500 µm possible
- Ribbon bonding
- Gold ball-wedge bonding with diameters from 25 µm to 75 µm possible
- Heatable work holder for bond process under temperature for up to 200 °C
- Quality assurance by pull and shear tests
- Control of reliability and life time by active power cycling test, passive temperature cycling and vibration tests
- Design of experiments to optimize bonding parameters
Functional principle

- Ultrasonic bonding works with high-frequency acoustic vibrations under pressure creating a solid-state welding
- For aluminum wedge-wedge-wire bonding ultrasonic energy is applied to the wire for a specific duration while being held down by a bond force
- Thermosonic gold bonding includes heat treatment and can be used to form solid-state bonds below the melting point of the mating metals
- For ball-wedge-bonding, a gold ball is formed before the bonding process by melting the end of the wire applying a high voltage

Devices and packaging

- Power electronic modules
- Single semiconductors
- Si, SiC, and GaN devices
- Surfaces providing best weld solutions: Aluminum, copper, gold, and silver
- Various material combinations of wires and surfaces - please refer to table below

Bonding machine features

- Semi-automatic bonding process
- Programmable bond layouts
- Deformation limit control
- Image recognition of semiconductors and substrates
- Large area modules as well as small micro electronic devices bondable
- Fast switching of bond heads and pull or shear heads

Table of material combinations

<table>
<thead>
<tr>
<th>Wires</th>
<th>Al</th>
<th>Cu</th>
<th>Au</th>
<th>Ni</th>
<th>Pd</th>
<th>Ag</th>
<th>Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cu</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Au</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Pd</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Ag</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Sn</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>

2 Gold wire (25 µm)
3 Aluminum wire (125 µm)
4 Aluminum wire (375 µm)
5 Copper wire (250 µm)