Modeling of block copolymer dry etching for directed self-assembly lithography

Zelalem Belete^a, Eberhard Baer^b, Andreas Erdmann^{a b}

^aFriedrich-Alexander-University of Erlangen-Nuremberg, Chair of Electron Devices, Cauerstrasse 6, 91058 Erlangen, Germany ^bFraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen, Germany

1. Introduction

- This paper presents a model for etching of Directed Self-Assembly (DSA) of block copolymer, polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA), using Ar and Ar/O_2 plasma chemistries.
- The etch process to transfer the self-assembled "fingerprint" DSA patterns to the underlying layer is still a challenge.
- A simple generic surface model based on surface site balance is implemented .
- Etching of selected lamella and contact-hole shrink features by Ar/O₂ plasma chemistry was simulated using fitted parameters of the model.
- Application of the model for profile simulation of contact-hole shrink pattern is demonstrated.

3.2. Profile simulations

- Angular dependence of sputter etching yield by Ar⁺ ions is included in the model ^[2]
- Ion-enhanced chemical etching is assumed to have no angular dependence.
- Monte-Carlo based profile simulation for surface update performed with level set using the Vienna topography simulator ViennaTS^[3]

2. Modeling

- Etching in Ar plasma chemistry
 - Only physical sputtering by Ar⁺ ions is considered
 - The effect of etching by VUV radiation is neglected because its effect is small at low temperatures...
 - Oxygen flux is zero.
- Etching in Ar/O₂ plasma chemistry
 - Physical sputtering etching by Ar⁺ ions and ion-enhanced chemical etching by Ar⁺ ions and O_2 neutrals are included in the model.
 - Chemical etching effect is neglected due to the small temperature in the plasma.
 - Physical sputtering is assumed as the main process step before cross-linking and the effect of ion-enhanced chemical etching on the formation of crosslinked layer is neglected.

$$\begin{aligned} \frac{d\theta_p}{dt} &= \frac{1}{\sigma} (\Gamma_i Y_{cl} (1 - \theta_p - \theta_o) - \Gamma_i Y_p (1 - \theta_{po}) \theta_p - \Gamma_i Y_{po} \theta_{po} \theta_p) \\ \frac{d\theta_o}{dt} &= \frac{1}{\sigma} (\Gamma_o Y_o (1 - \theta_p - \theta_o) - \Gamma_i Y_o \theta_o) \\ \frac{d\theta_{po}}{dt} &= \frac{1}{\sigma} (\Gamma_o S_{po} (1 - \theta_{po}) \theta_p - \Gamma_i Y_o \theta_{po} \theta_p) \\ ER &= \frac{1}{\sigma} (\Gamma_i Y_s (1 - \theta_p - \theta_o) + \Gamma_i Y_o \theta_o + \Gamma_i Y_p (1 - \theta_{po}) \theta_p + \Gamma_i Y_{po} \theta_{po} \theta_p) \end{aligned}$$

20% etch time

40% etch time

60% etch time

$\theta_{\rm p}$	cross-linked layer coverage on pristine PMMA/PS
θο	oxygen layer coverage on pristine PMMA/PS
$\theta_{\rm po}$	oxygen coverage on cross-linked layer
Y _s	sputtering yield of pristine PMMA/PS
Y _p	sputtering yield of the cross-linked layer
Y _o	Ion-enhanced chemical etching yield of pristine PMMA/PS
Y_{po}	ion-enhanced chemical etching yield of the cross-linked layer

3. Results

3.1. Etching in Ar and Ar/O₂ chemistry

100% etch time 80% etch time 110% etch time 120% etch time

Etch profiles (cross section through the center) at time steps for 115 eV ion energy, percentage etch time is the etch time normalized with time until PS is etched through in the center (52.93 nm PMMA + 5.6 nm PS). The initial structure generated by self-assembly of block copolymers was simulated with Dr.LiTHO^[4].

4. Conclusions

Initial geometry (scale = 0.1)

- The etch rates of PS and PMMA homopolymers can be approximated by a simple \bullet model.
- Profile simulations using model parameters extracted by fitting the model with ۲ homopolymer etch rates can give results which well agree with literature data.
- The remaining PS thickness and CD loss can be investigated with the model for profile simulations.
- Further investigations with more experimental data will provide a better understanding of VUV etching, chemical etching and cross-linking effects.

[1] Ting, Y.-H., Park, S.-M., Liu, C.-C., Liu, X., Himpsel, F. J., Nealey, P. F. and Wendt, A. E., J. Vac. Sci. Technol. B 26(5), 1684 (2008). [2] Mouchtouris, S. and Kokkoris, G., Plasma Process. Polym. 14 (2017) [3] Ertl, O. and Selberherr S., Computational Physics Communications, 180 (2009) pp1242–50 [4] Fuehner, T., Erdmann, A., Farkas, R., Tollkuehn, B., and Kokai, G., Proc. of SPIE 6520 (2007)

EB

 \rightarrow Model calibrated for homopolymer etch rate with Literature data from Ting et. al^[1]

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 688101.

FRIEDRICH-ALEXANDER

