

18th Conference on Gettering and Defect Engineering in Semiconductor Technology, Zeuthen, Germany, September 22-27, 2019

Diffusion of phosphorus and boron from ALD oxides into silicon

<u>S. Beljakowa¹, P. Pichler^{1,2,a}, B. Kalkofen³, R. Hübner⁴</u>

¹ Chair of Electron Devices, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany ² Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany ³ Institute for Micro and Sensor Systems (IMOS), University of Magdeburg, Magdeburg, Germany ⁴ Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Dresden, Germany ^a corresponding author: peter.pichler@fau.de

Motivation

Technology of high-density 3D-integrated semiconductor devices

Boron-doped (5 – 22 Ω cm) and phosphorus-doped $(8 - 12 \Omega \text{cm})$ 710 µm thick <100> Cz-Si wafers

Parameters of investigated samples

- requires ultra-shallow junctions with low sheet resistances and conformal doping^[1, 2]
- Low-energy implantation of dopants in semiconductor leads to damage-related and ion-beam shadowing effects ^[3, 4]
- Deposition of a dopant source by atomic layer deposition (ALD) followed by a drive-in process – a viable alternative Aim of this work:
- Study of dopant transport phenomena from ALD-grown oxides into silicon

- Deposition of Sb_2O_5 oxides and B_2O_3/Sb_2O_5 , P_2O_5/Sb_2O_5 oxide stacks by ALD onto Si
- RTA annealing in N₂ at 1000 °C for annealing times from 4 to 64 s with a ramp of 15 °C/s

Characterization methods:

- X-ray photoelectron spectroscopy (XPS)
- Transmission electron microscopy (TEM)
- Secondary ion mass spectrometry (SIMS)
- Sheet resistance

Numerical simulation of experimental doping profiles using Sentaurus Process of Synopsis

	set	ALD-grown oxide thickness [nm]			RTA time
		B ₂ O ₃	P_2O_5	Sb_2O_5	[s]
	1			64	20
	2		81	64	20
	3	28		63	20
	4		10	20	4 / 16 / 64
	5	10		20	4 / 16 / 64

Experimental results

XPS-spectra of annealed samples

XPS depth profiles of as-deposited B_2O_3/Sb_2O_5 -Si sample

(a) Overview bright-field image

Cross-sectional TEM images of annealed samples

Experimental

- Presence of phosphorus in annealed samples
- Residual phosphorus in the RTA set-up source of contamination
- Oxide composition of annealed samples at the surfaces close to $SiO_{2.4}C_{0.4}(P_{0.1})$

(b) High-resolution image (c) Element distributions obtained by EDXS analysis

	· · · · · · · · · · · · · · · · · · ·	Ő,	Ares	-
	<u>50 nm</u> Si	0	Sb	I
nm				

- Presence of spherical, partially crystalline particles embedded in an amorphous matrix of SiO₂
- Formation of Si-P precipitates at the oxide/Si interfaces in the B₂O₃/Sb₂O₅-Si and P₂O₅/Sb₂O₅-Si ulletsamples
- No precipitates, clusters or structural defects deeper inside the silicon substrate ullet

SIMS results and simulation

Calibration of the "React" diffusion model

SIMS and simulated total (solid lines) & electrically active (dashed lines) concentration profiles

Sheet resistance values

- Highly doped SiO_2 oxide source
- "Two-phase segregation" model
- Dynamical defect clustering via P_3 and B_4
- "Transient" activation model activation kinetic of the dopants
- Adjustment of forward-clustering reaction rate & the forward and backward reaction factors of the transient model
- Simulation parameters:

Parameter	Dopant			
	Boron	Phosphorus		
Dopant concentration in SiO ₂ [cm ⁻³]	(1.0 ÷ 1.5)x10 ²²	(0.95 ÷ 8.3)x10 ²¹		
Dopant diffusion coefficient in SiO ₂ [cm ⁻²]	2.7x10 ⁻⁴ exp(-3.3eV/(kT))	5.6x10 ⁻¹ exp(-3.32eV/(kT))		
Solubility in Si [cm ⁻³]	(6.5 ÷ 7.5)x10 ²⁰ exp(-0.2eV/(kT))	(4.5 ÷ 8.1)x10 ²⁰ exp(-0.06eV/(kT))		

Deviation of SIMS and simulation of boron profiles below 1x10¹⁹ cm⁻³ due to an overestimation of interstitials in simulation

Estimated fractions of electrically active dopants $\approx 15\%$ for phosphorus and $\approx 5\%$ for boron

Low dopant activation due to the clusters

Summary

- Complete transformation of the ALD-oxides into a silicon oxide during annealing at 1000°C
- > Formation of spherical, partially crystalline particles in the oxide & Si-P precipitates at the oxide-Si interface
- \succ High-concentration shallow phosphorus (>1x10²⁰ cm⁻³) and boron (>1x10²¹ cm⁻³) profiles in Si were realized
- > SIMS phosphorus and boron profiles as well as sheet resistances were reproduced by simulations considering dynamical dopant-defect clustering
- > Immobile dopant clusters formed during the drive-in processes affect the diffusion of phosphorus and boron and cause a low activation ratio of the dopants in Si

References & Acknowledgements

[1] B. S. Murty. P. Shankar, B. Raj, B. B. Rath, J. Murray, Textbook of Nanoscience and Nanotechnology (Springer, Berlin), pp. 107-148, 2013 [2] H. H. Radamson, Y. Zhang, X. He, H. Cui, J. Li, J. Xiang, J. Liu, S. Gu, G. Wang, Appl. Sci. 2017, 7 (10), 1047 [3] Y. Sasaki, K. Okashita, B. Mizuo, M. Kubota, M. Ogura, O. Nishijima, J. Appl. Phys. 2012, 111, 013712 [4] L. A. Larson, J. M. Williams, and M. I. Current, Rev. Accel. Sci. Technol. 2011, 4, 11

> The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG)