

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY

1 Processed SiC device wafer with 90 µm total thickness.

BACKEND OF LINE PROCESSING FOR SIC

PROCESS LINE FOR WAFER THINNING AND
BACKSIDE CONTACT FORMATION UP TO 150 MM

Benefits of thin-wafer technology

- Minimizing of power losses
- Less deterioration of blocking voltage
- Improvement of thermal connectivity
- Significant increase of power density

Process line

- Bonder for temporary bonding with thermoplastic polymer
- Debonder with thermal slide off
- Grinder and polisher
- Laser annealing tool

Process flow

- Temporary bonding of front-end finished device wafer to carrier wafer
- Backgrinding of device wafer's backside to final thickness
- Deposition of ohmic contact metal
- Formation of ohmic contact by laser annealing
- Deposition of solderable metal stack
- Debonding of temporary bonded device wafer

Fraunhofer IISB

Schottkystrasse 10 91058 Erlangen Germany

Contact:

Dr. Volker Häublein Phone: +49 9131 761 220 volker.haeublein@iisb.fraunhofer.de

www.iisb.fraunhofer.de

Example: 6 A / 650 V SiC JBS diodes

- Total thickness reduction from 370 μm to 90 μm \longrightarrow Final substrate thickness around 65 μm
- Backside ohmic contact resistance reduction and uniformity improvement by laser annealing
- Electrical parameters like voltage blocking capability of 1.1 kV and leakage current < 1 µA at 650 V not affected by backside processing
- Reduction of ON-state forward voltage drop from 1.78 V to 1.62 V at 6 A
- ON-resistance of 650 V Schottky diodes lowered to 90 m Ω \longrightarrow Reduction of more than 30 %

2 Line for backend of line processing at Fraunhofer IISB. © Kurt Fuchs / Fraunhofer IISB

Specific resistance on wafer backside after laser annealing.

Blocking characteristic of 650 V SiC JBS diode initial vs. thinned.

Forward voltages of thinned 650 V SiC JBS diodes at 1 A.

Forward characteristic of 650 V SiC JBS diode initial vs. thinned.