


FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY

THIN-FILM SYSTEMS

THIN-FILM SYSTEMS

Due to limitations in areal scalability and high cost per area, conventional silicon technologies do not meet the cost demands of large-area electronic systems. Furthermore, assembly of discrete devices is not an option when it comes to larger numbers like in distributed sensor arrays or display backplanes.

Thin-film electronics fills the gap in between those technologies offering

- Ultrathin form factor
- Mechanical flexibility
- Large-area coverage, and
- The prospect of employing low-cost fabrication techniques like printing or roll-to-roll processing

In close cooperation with our customers and research partners we develop materials, processing techniques, and devices for application in thin-film systems.

Materials and Processing

We utilize conventional techniques like vacuum-based sputtering (PVD) or plasma-enhanced chemical vapor deposition (PECVD) for deposition of elemental (Si, metals) as well as metal oxide (ZnO, ITO, Al_2O_3) materials which both can give a complete materials toolbox for active devices, sensors, passives, and circuit periphery.

Furthermore we strive to replace conventional techniques by solution-based coating and direct printing techniques. Therefore we develop and formulate nanomaterials and molecular precursors into stable inks and investigate deposition and conversion into functional layers.

Devices and Systems

The integration of functional thin-films into devices and applications is the second focus of our activities. Large-area distributable sensors, addressing and evaluation circuitry, small TFT power drivers and control circuitry are the building blocks that lead to novel integrated thin-film systems for energy, automotive, industrial, consumer, and lighting applications.

COVER PHOTO

Metal oxide thin-film transistors under test

- 2 Screen-printed electrolyte sensor in test setup
- 3 Micrograph of ZnObased thin-film transistors

COOPERATION

We offer long-term experience proven by successfully conducted bilateral and multi-partner research activities.

- Contract based
 - Research and development projects
 - Application demonstrators
 - Analytical and measurement services
 - Feasibility studies
 - Consulting
- Publicly funded research projects
 - On regional, national and international level
 - Concept development and partner selection
 - Proposal coordination and writing
 - Research and development work
 - Coordination activities

Services and Solutions

	Techniques	Characterization
Nanomaterials synthesis, ink formulation	Gas-phase or wet chemical synthesis, ball milling, ultrasonication, filtering, high-speed centrifugation	Viscosimetry, high-speed centrifugation, dynamic light scattering (DLS), thermo- gravimetric analysis (TGA/DSC)
Thin-film deposition and annealing	Ink jet, screen printing, spin coating, spray coating, spray pyrolysis, plasma treatment, DC and RF sputtering, e-beam evaporation, Plasma enhanced CVD, atomic layer depo- sition, furnace annealing, hot plates	Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), atomic-force micro- scopy (AFM), ellipsometry
Device and application development	Full 200 mm CMOS line, glovebox line, combination of printed devices and conventional electronics, pre-processing of test structures	

Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystrasse 10 91058 Erlangen Germany

Contact:

Dr. Michael Jank Phone: +49 (0) 9131 761-161 FAX: +49 (0) 9131 761-360 michael.jank@iisb.fraunhofer.de

Dr. Anton Bauer

Phone: +49 (0) 9131 761-308 FAX: +49 (0) 9131 761-360 anton.bauer@iisb.fraunhofer.de

© Fraunhofer IISB | www.iisb.fraunhofer.de