We Develop Advanced Vehicle Power Electronics with Innovative Solutions and Outstanding Performance

As an application-oriented research institute, our main interest is to advance into new ranges of system performance and to open up new fields of applications for high performance and cost-efficient power electronic solutions. This is both a challenge and an incentive to us. To find creative solutions, we are ready to move off beaten track whenever necessary.

Research and development projects are carried out by highly qualified teams of engineers and technicians. All of these teams work in a number of well-equipped power electronics laboratories with access to a wide range of simulation and design tools, modern measuring, testing, and analysis equipment, as well as cutting-edge assembly and joining technologies. The fact that we make use of latest components, materials, and methods goes without saying.

Our partners are from small and medium-sized enterprises, science and industry. As an ECPE Competence Center (www.ecpe.org), partner in the Bavarian Cluster “Leistungselektronik” (Power Electronics), the ENERGIEregion Nuernberg e.V., and the Fraunhofer Forum ElektroMobilität e.V. in Berlin, we cooperate on international and regional levels.

For an overview on all activities of our power electronics competence center please refer also to the brochures on energy electronics, devices, modules, and reliability (available from our homepage www.iisb.fraunhofer.de).

From semiconductor devices to high efficiency and power density systems for vehicle integration

Our Automotive Power Electronics Experts Teams

4 Research Groups
40 Engineers and Technicians

Drives and Mechatronics
Head: Dr.-Ing. Maximilian Hofmann
Phone: +49 9131 761 385
maximilian.hofmann@iisb.fraunhofer.de
- Electric Drivetrains
- Inverter Development
- 3D Integration, Mechatronics
- E-Vehicle Test Center

RF-Electronics and EMC
Head: Dipl.-Ing. Christopher Joffe
Phone: +49 9131 761 296
Christopher.joffe@iisb.fraunhofer.de
- Inductive Power Transmission
- High Frequency SiC/GaN Converters
- EMC Test Site
- Semiconductor Characterization

Vehicle Electronic Department
Head: Dr.-Ing. Bernd Eckardt
Phone: +49 9131 761 139
bernd.eckardt@iisb.fraunhofer.de

AC/DC Converters
Head: Dr.-Ing. Stefan Zeltner
Phone: +49 9131 761 140
stefan.zeltner@iisb.fraunhofer.de
- Vehicle to Grid
- Insulating Converters
- Modular Power Electronics
- Circuit Simulation

DC/DC Converters
Head: Dipl.-Ing Stefan Matlok
Phone: +49 9131 761 176
stefan.matlok@iisb.fraunhofer.de
- DC/DC Converter Systems
- Digital Control
- System Simulation
- System Integration
Power Electronics for Electromobility

Power electronic systems are key components for any hybrid or electric vehicle. All these vehicles – apart from some bikes and micro hybrids – require a high-voltage power net with a voltage above 60 V in addition to the traditional 14 V net. This high-voltage power net must be electrically isolated from the low-voltage net and vehicle chassis for safety reasons.

A high-voltage vehicle power net must contain an electrical energy storage and a traction drive inverter. Highly different vehicle concepts do exist, however, which include further high-voltage power electronic subsystems, such as DC/DC converters for supplying a low-voltage net, inverters for, e.g., an electric air-con compressor, oil or cooling water pumps, DC/DC converters for stabilizing the traction bus voltage, or AC/DC converters as an uni- or bidirectional vehicle-to-grid interfaces.

Fraunhofer IISB takes a top position internationally in the field of power electronics for electromobility. This is expressed in a variety of development projects with all large automotive manufacturers and suppliers. Many of the results have gained international attention.

We permanently strive to open up new applications and functionalities. The grid integration of electric vehicles, e.g., will gain more and more importance in the future. For avionic applications the new possibilities of modern power electronics will pave the way towards the “more electric aircraft”. This means powering many more actuators electrically in order to improve the overall fuel economy, and to reduce the maintenance efforts associated with hydraulic systems.

Fuel Cell Vehicles

Plug-In Hybrid and Electric Vehicles

Electric Traction Drives

Smart Lilo-Battery Systems

Our R&D focus: The whole spectrum of power electronic systems necessary for future vehicles.
Electric Drives and Inverter Systems

The development of efficient, highly integrated and safe electric drive systems plays a key role for the electrification of individual mobility. A few basic e-motor configurations cover most of the electric drive applications in hybrid and all-electric vehicles: one or two electric motors in a single housing and wheel-hub motors. For all these configurations, innovative, cost-effective, and space-saving solutions for a system integration of the power electronics into or close to the electric drives are developed at Fraunhofer IISB.

For controlling the customer-specific inverters, a universal software platform is available with model-based implementation and a direct link between Matlab/Simulink™ and our powerful 32-bit target processor. Hardware and software development is carried out under consideration of ASIL requirements.

Integrated Drive Systems

Following our smart drive approach, no complex HV harness is required for the electric power train - only a shielded DC-link cable connecting to the energy storage. EMC problems are reduced significantly by avoiding any AC cabling in the vehicle. This placement of electronics close to electric machines or even close to the internal combustion engine in hybrid cars leads to a higher level of thermal and mechanical stress. The use of common material concepts and innovative joining technologies, for example double-sided nano-silver-sintering of semiconductor devices, enables us to achieve the required robustness.

The axle drive-unit in the picture above includes two mechanically independent induction motors (IM) with reduction gear (6:1). Each motor has a peak-power of 20 kW and a maximum torque of 500 Nm. The 600 V IGBT double inverter with 2 x 45 kVA output power is directly integrated in the electric drive system sharing housing and cooling with the e-motors.

SiC and GaN Inverter for Highest Efficiencies and Motor-Speeds

With state-of-the-art inverter systems (e.g. using Si-IGBTs and Si-diodes) the switching frequency in higher power-ranges is typically limited to values of 10 to 20 kHz due to high dynamic losses.

Novel Wide-Band-Gap (WBG) semiconductors, like SiC and GaN switches, offer the potential for inverter systems with highest efficiencies, power-densities and especially switching frequencies far beyond the state-of-the-art. High-speed electric motors, like compressors and electric turbo-chargers, require higher inverter output-frequencies and therefore higher switching-frequencies to avoid additional losses and torque-ripple within the machine.

In order to meet these demands, investigations and product-developments of inverters with wide-band-gap semiconductors are carried out. An example is a 60 kW inverter system. The use of siliconcarbide 1200 V MOSFETs, ceramic-capacitors and a low inductive system design allow switching frequencies up to 100 kHz at reasonable efficiencies. The novel semiconductors with their reduced losses enabled a power-density of the overall power-stage of >150 kW/l which is far beyond state-of-the-art.

The inverter is realized in B6 topology and consists of three half-bridge DCB-powermodules equipped with 25 mOhm SiC-MOSFETs. A broad input voltage range from 900 V DC to 200 V DC is covered. The whole system is realized in a highly compact mechatronic package.

To summarize, we offer the following services for electric drive and inverter developments:

- Highly integrated drive solutions for hybrid or electric vehicles
- Complete in-house development and testing of inverter power electronics (incl. 3D integration)
- Development of WBG-inverter systems for highest switching frequencies and efficiencies
- Vehicle integration of electrical drive and power management systems
- Motor control development for various machines (e.g. PMSM, IM, SSM, BLDC etc.)
- Functional safety concept (ISO 26262, up to ASIL-D)

Contact:
Dr. Maximilian Hofmann
Phone: +49 9131 761-385
maximilian.hofmann@iisb.fraunhofer.de
Mechatronic System Integration

The trend towards miniaturization and system integration in power electronics is mainly driven by applications with severe space restrictions such as automotive, robotics or avionic. Major challenges arise from the fact that the installation space in these applications is usually predefined by mechanical requirements with less consideration for power electronics needs. This often results in complex geometries and contamination in addition to high thermal and mechanical stress. However, the better use of space, the avoidance of expensive cables and failure prone connectors, and the reduction of EMI filter expense make it necessary to choose this path.

Various concepts and solutions for the integration of electric motors and inverters into the drivetrain of passenger cars have been developed. Each design is adapted to the different locations of the e-drive within the drivetrain.

Experience with air, water/glycol and oil cooling is available. Vehicle-specific requirements, such as coolant temperatures up to 115°C and high vibrational loads are taken into consideration.

A mechatronic system integration requires more than just increasing power density. We are working on innovative integration concepts as well as on new device, interconnection, and cooling technologies that foster a 3D integration, increase ruggedness, and decrease costs of power electronics.

Our focus is on:
- Customized power electronic systems for vehicle applications (automotive, railway, avionic, etc.),
- Vehicle integration of electrical drive and power management systems,
- Mechatronic integration of power electronics into vehicle components (incl. 3D integration),
- Advanced thermal management,
- High voltage safety concepts,
- EMC concepts and solutions,
- Traction energy storage,
- Simulation of power electronic systems within a vehicle environment,
- Studies on hybrid and fuel cell vehicle powertrain topologies with special emphasis on topics like overall performance, efficiency and system costs.

Contact:
Hubert Rauh
Phone: +49 9131 761-141
hubert.rauh@isb.fraunhofer.de

Non-Insulating High Power DC/DC Converters for Power Train Energy Management

Our high voltage, non-insulating, bidirectional converters are mainly used for traction energy management in case of recuperation, boost, the management of different power sources (e.g., fuel cell and battery), and fast charging. The DC/DC converters covers a power range up to about 600 kW with efficiencies up to 99%.

Combining the DC/DC converter with a drive inverter in terms of system integration is as possible as an integration into the electrical energy storage. The type of cooling (air, water, or oil) is generally tailored to the specific application. A fully digital control and a CAN-bus interface for the communication with a vehicle control unit is standard.

We make use of the latest Si, SiC, and GaN devices. Our multi-phase concept makes it possible to shift the fundamental frequency of the DC link ripple voltage in the megahertz range, resulting in a considerable reduction of weight and volume of the passive components.

Robust and High-Speed 300 A, 450 V buck / boost DC/DC Converter for universal drive train applications
Power density improvements by SiC and GaN

We build complete systems for our industrial partners, including high-power and bus connectors. Integrated in a sealed housing, these robust compact devices are used in R&D hybrid, electric and fuel cell cars for evaluating the electric power train. Efficiencies up to 99% over a wide range of load can be realized via a load-adaptive management of the number of active phases. In our power density figures EMI filters, the control electronics, and the fluid cooler are generally included. The high power density and low power to weight ratio of our DC/DC converters make them especially suitable for demanding motor sports (KERS) and aircraft applications.

Key aspects:
- Ultra compact and efficient converter solutions
- User specific housing, layout, communication and electrical power specification
- High Speed control loops for stability and save handling even of load dumps

Contact:
Stefan Matlok
Tel. +49 9131 761 176
stefan.matlok@iisb.fraunhofer.de

Insulating DC/DC Converters for connecting board grids and supplying auxiliary devices

Fraunhofer IISB develops all kinds of insulating DC/DC converters for mobile applications. This includes e.g. insulating high voltage (up to 850 V) to low voltage (commonly 14 V, 24 V or 48 V) converters in the power range from 10 W up to approx. 5 kW. With efficiencies of up to 97% and power densities up to 10 kW/dm³, they can be easily integrated into a small car, directly inside the high voltage battery system or the drive inverter. The photo to the right gives a closer look at how by using modern power devices, full digital control techniques, and mechatronic approaches, outstanding power densities and efficiencies are reached.

As with other Fraunhofer IISB vehicle electronics prototypes, insulating DC/DC converters can be developed for plug-and-play installation, with automotive qualified connectors. It could be used within two different voltage ranges for applications in light or heavy trucks and can be controlled via CAN interface. Due to the serial connectable phases on the primary side, the use of automotive qualified Si power semiconductors with 600/650 V blocking voltage is possible to reach a DC-Link voltage up to 800 V.

Insight of high power density insulating DC/DC converter

- Galvanic isolation
- Supplying of high power demand auxiliary devices in vehicles
Battery Chargers – Conductive & Inductive Solutions for Electric & Plug-In Hybrid Vehicles

In the field of conductive vehicle battery chargers, Fraunhofer IISB follows a modular design approach based on 3.7 kW galvanic isolated AC/DC converter units. With the modular circuit design approach, we are able to develop and realize a broad on-board charger product line for 3.7 kW, 7.4 kW, 11 kW and 22 kW demands.

- Very high power density up to 5 kW/dm³
- High efficiency up to 95 %
- Very high input voltages (up to 850 V)
- Modular Multi Level Design
- Automotive qualified (Si) power semiconductors

Contact:
Bernd Seliger
Tel. +49 9131 761 288
bernd.seliger@iisb.fraunhofer.de

Dr. Stefan Zeltner
Tel. +49 9131 761 140
stefan.zeltner@iisb.fraunhofer.de

Insulating 5 kW DC/DC converter from 750 V to 24 V for trucks

In the field of conductive vehicle battery chargers, Fraunhofer IISB follows a modular design approach based on 3.7 kW galvanic isolated AC/DC converter units. With the modular circuit design approach, we are able to develop and realize a broad on-board charger product line for 3.7 kW, 7.4 kW, 11 kW and 22 kW demands.

- Very high power density up to 5 kW/dm³
- High efficiency up to 95 %
- Very high input voltages (up to 850 V)
- Modular Multi Level Design
- Automotive qualified (Si) power semiconductors

Contact:
Bernd Seliger
Tel. +49 9131 761 288
bernd.seliger@iisb.fraunhofer.de

Dr. Stefan Zeltner
Tel. +49 9131 761 140
stefan.zeltner@iisb.fraunhofer.de

In the field of inductive charging systems we offer solutions with high transfer efficiency and small stray fields through minimal air gap, high positioning tolerance, lightweight pick-up, and a minimal package volume compared to underbody systems.

Positioning tolerant inductive charging solution

Besides pure battery chargers we also provide chargers with extended functionalities, such as bidirectional energy flow for applications in vehicle-to-grid scenarios, or an integrated mobile power socket (e.g. 230 V AC).

- High power density and high efficiency
- User and application specific design
- Wide input voltage range
- Supporting charging mode 2 and mode 3 according DIN EN 61851-1

Contact:
Christopher Joffe (inductive charging systems)
Tel. +49 9131 761 296
christopher.joffe@iisb.fraunhofer.de

Dr. Stefan Zeltner
Tel. +49 9131 761 140
stefan.zeltner@iisb.fraunhofer.de
Electro Magnetic Compliance – EMC Tests for Automotive and Industrial Applications

The EMC lab at Fraunhofer IISB offers pre-compliance measurements during the development process of our prototype systems and the components of our industrial partners. We offer a broad range of services from consulting in case of EMC problems via different measurements according to harmonized standards to very detailed circuit and layout optimizations.

In the EMC test chamber we can perform, e.g., conduct emission measurements on electric or hybrid cars with the vehicle's own radio antenna according to CISPR 25 as well as many standard tests on component level.

The immunity to electromagnetic interferences can be tested in our Fully Anechoic Room (FAR) according to industrial and automotive standards. These tests include all relevant pre-compliance measurements in the context of a homologation testing according to 2004/104/EG directive or ECE R10 Rev. 3 of the United Nations.

Our engineers have longtime experience in the field of electromagnetic compliance (EMC) and interference (EMI). They are working in several national standardization committees. We can thus guarantee competent expert advice and up to date information on EMC topics to our partners.

Contact:
Thomas Smazinka
Tel. + 49 9131 761 285
thomas.smazinka@iisb.fraunhofer.de

Automotive System Simulations - From Vehicle to Chip Level

The automotive targets regarding cost, size, weight, and reliability cannot be met if either irrelevant maximum requirements are specified or unnecessary safety margins are designed in. A prerequisite for optimized, tailor-made designs are simulations of the entire powertrain under different driving cycles. Our special focus is on the resulting load conditions of the various power electronics components. In order to get realistic data about the transient temperature behavior necessary for lifetime and reliability analyses, thermal models are linked to all relevant power electronics components. For simulations we use a Matlab/Simulink™ environment. This enables us to perform analyses regarding parameters like e.g. powertrain efficiency, vehicle operating strategy, energy storage load, or cruising range. Standard and artificial driving cycles are used, as well as real ones measured with our GPS-based vehicle data recorder.

Ambient temperatures strongly influence the cruising range of electric vehicles due to the required energy for heating and cooling the passenger compartment and the battery system. New approaches investigate the use of heat pumps and thermally insulated cabins. In addition, thermal preconditioning of the vehicle, using existing thermal masses significantly reduces the required battery energy. An overall vehicle energy management, comprising thermal and electrical energy, allows efficient reuse of even minor losses in the electric drive-train for heating purposes.

Contact:
Dr. Bernd Eckardt
Tel. + 49 9131 761 139
bernd.eckardt@iisb.fraunhofer.de

Automotive system simulation – a key competence for any application specific optimization of power electronic systems

<table>
<thead>
<tr>
<th>Driving Cycles</th>
<th>Vehicle and Powertrain Models</th>
<th>Currents Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Profiles</td>
<td>Matlab/Simulink™</td>
<td>PSpice™, MathCad™</td>
</tr>
<tr>
<td>Lifetime and Reliability Models</td>
<td>Thermal Models</td>
<td>Power Losses</td>
</tr>
<tr>
<td>Static and Transient Component Temperatures</td>
<td>Efficiency Calc.</td>
<td></td>
</tr>
<tr>
<td>Fuel Economy, Cruising Range, Acceleration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy Storage Systems and Energy Management Solutions

Our focus is on fully customized cost efficient electric energy storage and management system solutions for mobile and stationary applications. Our activities range from development of embedded energy management software to the design of complex, high-power energy storage systems for electrically propelled vehicles (e.g., automobiles, bikes, motorcycles and other types of road vehicles, aircrafts, ships and submarine vehicles) and for smart grid applications in combination with renewable energies (i.e., in private household and industrial utilization).

Full-custom Battery Systems

At Fraunhofer IISB, we develop highly innovative, cost-efficient energy storage systems, including battery monitoring and management hardware and its embedded software, battery module and pack modeling and design, as well as sensors and actuators for increased reliability and safety.

Smart battery system based on lithium-ion batteries for an high-performance electric vehicle

Throughout the engineering of traction energy storages, all necessary competences work together at Fraunhofer IISB. Especially with a view on modern lithium-ion battery cells supplying the power train in electrified vehicles, topics like internal and external hazards are of vital importance.

Full-custom battery system design, including mechanical, thermal and electrical engineering

So we can offer our customers the development and realization of state-of-the-art traction battery systems (BEV/HEV) – from the first concept to the in-house testing of the complete system:

- Electric specification, e.g. voltage-level and capacity, according to the customer requirements
- Use of the best fitting lithium ion cell technology (high energy-cells, high power-cells or combination)
- Adapted cell-monitoring and battery-management-systems
- Customer specific electrical (power/signal) and mechanical interfaces
- If required: implementation of additional power-electronic-components directly into the battery system (e.g. HV or LV-DC/DC-converters)
- Thermal management from system- to the cell-level (e.g. liquid- or air cooling, one-sided or double-sided cooling)
- 3D mechanical design development with individual vehicle integration
- Modular design approach for a cost-efficient later industrialization and a safe handling

Contact:
Dr. Bernd Eckardt
Tel. + 49 9131 761 139
bernd.eckardt@iisb.fraunhofer.de
High-end daisy chainable universal battery monitoring electronics with full redundancy for safety-critical high-availability applications offering ±1.2mV accurate cell voltage measurement on 12 channels in an extended temperature range, NTC-based and sensorless temperature measurement, active or passive cell balancing with balancing status monitoring.

Battery Management Systems

High performance monitoring and management systems for energy storage devices are developed at Fraunhofer IISB. The software is a key component in present storage systems and, as system complexity continues to increase, plays an increasingly central role. Voltages, currents, and temperatures are measured and logged for calculating the state-of-charge (SOC), state-of-health (SOH) and state-of-function (SOF) of the storage systems since these values are crucial for long lifetime and predictive maintenance. The development of these functions requires advanced know-how on system and on cell level. The Fraunhofer IISB brings this together.

Battery Modelling and Testing

At Fraunhofer IISB, we develop accurate electro-thermal battery models for battery system simulation and design. We also develop and implement compact models based on robust electro-chemical battery models. These models are used in battery state estimation algorithms based on Kalman filtering (e.g., adaptive extended Kalman filter). Following characterization methods and equipments are available:

- Electro-chemical impedance spectroscopy (EIS) up to 1 MHz and up to 30 A
- Charging and discharging tests on battery cell level between -1 V and 8 V and up to 440 A
- Testing of driving cycles on cell, module and system level up to ±1000 V, ±1000 A, 500 kW

New Sensors and Actuators for Safety

We develop and integrate sensors and actuators for improving safety and availability of battery systems.

Contact:
Dr. Vincent Lorentz
Tel. +49 9131 761 346
vincent.lorentz@iisb.fraunhofer.de
Electric Drive Technology Platforms

Fraunhofer IISB is developing various research platforms for the evaluation and optimization of hybrid and electric vehicle powertrain components.

The hybrid vehicle platform is based on a conventional AUDI TT, the electric vehicle platform on a Citroen AX and an ARTEGA GT.

In the case of our hybrid vehicle platform, the original front-wheel drive is untouched but supplemented by an »active rear axle«. This modular, easy to implement, through-the-road parallel hybrid concept allows a lot of attractive features to be realized:

- Recuperation of braking energy
- Boosting with additional torque
- Temporary electric four wheel drive (T-4WD)

All converters necessary for electrical energy management, power supply, and charging are integrated into the energy storage, which therefore transforms into a smart battery unit. This kind of system partitioning follows the basic idea of a “site-of-action integration” and minimizes high voltage cable harness and system costs.

An innovative multiport DC/DC-converter is used in the electric vehicle platform for managing the high-voltage electrical system. This allows a flexible combination of different energy storages with different voltage levels (e.g., a traction-battery with additional supercap storage).

An integrated drive unit with two independent electric machines and a maximum power output of 2x 80 kW allows an independent torque allocation for each wheel of the rear axle.

Further research focuses within the vehicle project:

- Operational strategy with variable DC-link voltage for increase of part-load efficiency
- Position-tolerant inductive charging
- Model-based vehicle control system using Matlab/Simulink and dSpace
- Street legality
Electric Vehicle Test Center

Vehicles with an electrical power train put completely new demands on test systems. The new vehicle test center at IISB is dedicated to electric vehicles and allows for the testing and characterization of all components of an electrical power train, as well as complete electric vehicles. The test center includes test beds for electric drives, traction batteries, system reliability, and electromagnetic compatibility (EMC).

Overall electric vehicle testing is possible in an air-conditioned dynamometer, including fully automated road and driving cycle simulations. All labs of the test center include a powerful highly dynamic DC source (150 kW, 0 ... 800 V, 4Q), and a coolant conditioning system (-40°C to +115°C) for the operation of the system-under-test (SUT).

Electric Test Bed for single and dual Motor Traction Drives

Single motor drivetrains as well as two motor axle drives can be characterized with a test bed which was especially designed for electric vehicle drives. Two e-motors can load the SUT with arbitrary load profiles within a performance range up to:

- Torque: 1.400 Nm / 3.000 Nm (S1/S6)
- Breakdown torque: 4.500 Nm
- Power: 129 kW / 275 kW (S1/S6)
- Track width: 0…1.800 mm

A professional automation system combined with high-precision recording equipment for DC and AC currents, voltage, torque, and speed allow the measurement of:

- Inverter and motor efficiency characteristics
- Speed-torque characteristics, and provides
- Vehicle and road simulations.

A Matlab/Simulink™ interface sets a direct link to our vehicle simulation platform.

Contact:
Stefan Arenz
Tel. + 49 9131 761 232
stefan.arenz@iisb.fraunhofer.de

Dr. Maximilian Hofmann
Tel. + 49 9131 761 385
maximilian.hofmann@iisb.fraunhofer.de
Air conditioned 4-Wheel Dynamometer

The achievable cruising range of an electric vehicle is not only a function of vehicle data, battery size, and driving cycle. Auxiliary systems, e.g., for air-conditioning or lighting, affect the cruising range, as well as the highly temperature-dependent properties of the traction battery.

Electric vehicles can be characterized using our 4x4 dynamometer without expensive test bed adaptations of the vehicle. The entire dynamometer is housed in a chamber that can be temperature-controlled from -25°C to +45°C.

Preferred applications of the dynamometer are:

- Overall power train efficiency, energy consumption and cruising range characterizations
- Road and driving cycle simulations
- Evaluation and parameterization of simulation models
- Development of drivetrain control algorithms

EMC Test Chamber

The electric energy converted in hybrid and all-electric vehicles is about two orders of magnitude above the one processed in conventional cars, while EMC limits are nearly the same. The structure of the electric power net is also completely different due to safety requirements. EMC is therefore a central issue in the development of electric powertrain systems.

For pre-compliance measurements and immunity tests of electric powertrain components and entire vehicles, our test center includes an EMC test chamber, fully equipped with test and measurement systems up to 1 GHz. The EMC chamber can be passed with a mid-size passenger car. Walls, floor, and ceiling of the chamber are lined completely with ferrite absorbers, which qualifies the chamber for measurements in a wide frequency range.

The systems under EMC test can be supplied with coolant and with electrical energy via high power feed-through filters (690 VAC, 250 A and 1000 VDC, 500 A).

Battery Test Center

Single battery cells as well as complete electric vehicle storage units - with a mass of up to several hundreds of kilograms - can be tested and characterized regarding their electrical and thermal properties.

Contact:
Thomas Smazinka
Tel. + 49 9131 761 285
thomas.smazinka@isb.fraunhofer.de
(EMC Test Chamber)

Dr. Maximilian Hofmann
Tel. + 49 9131 761 385
maximilian.hofmann@isb.fraunhofer.de
System Reliability

There is a clear trend towards higher mechatronic integration levels of power electronics in order to reduce costs and volume. Besides higher temperature stress this leads in many applications also to higher shock and vibration levels with potentially harming impact on the electronics (for example when positioning the systems close to mechanical components like gears and motors). The frequency dependent vibration loads vary significantly for different applications and installation spaces with the necessity of specific countermeasures.

At IISB complete experimental (shaker system) and simulative toolchains (PSD-analysis and lifetime modelling) are available for analyzing the system behavior in high shock and vibration environments. Besides modal analysis and the optimization of single components also transfer functions for complex structures (e.g. complete power electronic systems and cabinets) can be determined. These describe the internal propagation of externally induced vibrations and allow the derivation of application specific test and load profiles. Examples are all type of signal and power connectors with the possibility to quantify the corrosion inducing micro-movements as a function of the overall system vibration stress.

Vibration analysis with shaker-system and FEM-simulation

In addition to this vibration testing and simulation devices, several active and passive temperature cycling test benches are available that are mainly used for reliability investigations at the device and board level.

Contact:
Dr. Maximilian Hofmann
Phone: +49 9131 761-385
maximilian.hofmann@iisb.fraunhofer.de

Promotion of Young Researchers in close Cooperation with FAU Erlangen

Well-educated and committed engineers are the basis of our success. This is why we are strongly dedicated to advertising the engineer profession, and supporting schoolchildren, students, and young engineers as far as possible.

Interesting jobs for research assistants, trainees, and guest scientists

The department ‘Vehicle Power Electronics’ of the Fraunhofer-IISB offers a lot of opportunities for young scientists and engineers:
- Jobs for engineers, scientists, and research assistants
- Topics for master and PhD theses (in cooperation with the University of Erlangen-Nuremberg)
- Taster traineeships and regular internships

An example for a successful cooperation with students from the University of Erlangen-Nuremberg is the ‘TechFak EcoCar’. Within this project, the student-team modified an outdated electric vehicle with up-to-date drivetrain components. For example a drive-unit, a lithium-ion traction-battery and a CAN-based vehicle control-system have been developed and integrated.

The Fraunhofer IISB supports the EcoCar-team with technical knowledge, components for the electrification, as well as laboratory equipment and testing facilities for the vehicle modification. For some students, the EcoCar-project was the starting point for a future career at the Fraunhofer IISB.

The public vehicle presentation in April 2014 was also the KickOff for the follow-up project – the development of an electric motorcycle.

TechFak EcoCar: Close cooperation with students from the FAU-Erlangen

Contact:
Dr. Bernd Eckardt
Phone: +49 9131 761 139
bernd.eckardt@iisb.fraunhofer.de
Your Way to Our Centers of Excellence

Headquarters Erlangen
Schottkystrasse 10 ▼ 91058 Erlangen

ZKLM - Nuremberg
Landgrabenstr. 94 ▼ 90443 Nuremberg

Branch-lab „Auf AEG“ – Nuremberg
Fürther Str. ▼ 90443 Nuremberg
Fraunhofer Institute for Integrated Systems and Device Technology

Director: Prof. Dr. Lothar Frey

Address
Schottkystrasse 10
91058 Erlangen - Germany

Contact: Dr. Bernd Eckardt
Phone: +49-9131-761-139
Fax: +49-9131-761-312
Internet: www.iisb.fraunhofer.de

Picture credits: Fraunhofer IISB; Fuchs