

Holographic Lithography Simulations drive the ASML EUV roadmap

Timon Fliervoet & Gerardo Bottiglieri

Erlangen

In our world today, chips are everywhere

Economics dictate to make smaller transistors

Moore's Law: number of transistors double every two years

The first integrated circuit on silicon, on a wafer the size of a fingernail

(Fairchild Semiconductor, 1959)

Today: Billions of transistors on the same area

Lithography is critical for shrinking transistors

Lithography is the only semiconductor production step to process the wafer die per die, in contrast with all other production steps. This makes ASML's technology so pivotal in getting the highest yield and best performance in chip manufacturing

Lithography: Ancient Greek $\lambda(\theta \circ \zeta)$, lithos, meaning 'stone', and γράφειν, graphein, meaning 'to write')

Page 4

How a lithography system works A short video

ASML FIISB: Simulations in holistic lithography

The semiconductor manufacturing loop

100's of processing steps per wafer

October 2023

A tightly integrated set of solutions for scaling and yield

ASML FIISB: Simulations in holistic lithography

October 2023

Key changes from DUV to EUV lithography

From transmission to reflective optics

Lithography Imaging Simulations play a Key Role in 'Life of ASML tool'

Imaging feasibility for new tool types No machine to experiment on

Performance verification Did we build what we specified?

Root-cause finding on performance issues **Investigate sensitive parameters first**

Replace experiments Reduce number of test wafers and tool time +

Customer support:

Accelerate process development determining litho strategy Improve yield: optimize exposure conditions to maximize process robustness

October 2023

Simulations: The Quest for the Best Compromise

A machine can never be perfect in performance, cost and time

Adoption of EUV Lithography has Increased the Need for Simulations

EUV masks are complex:

- a. Multiple physical phenomena take place at mask
- **b.** Multiple mask factors/components greatly affect the final scanner lithographic performance

Simulations:

- Understand physical mask factors in lithography
- Recommendations for mask absorber
 - (geometry, n, k), multilayer, illumination direction, Assist Features.
- Assess mitigation strategies

Novel exposure techniques provide improved contrast Complex simulations require fundamental understanding

A. Erdmann et al, Exploration of imaging solutions for high NA EUV lithography by combination of dual monopole exposure strategies with low-n absorbers, EMLC 2023, Dresden

ASML-Fraunhofer IISB collaboration dates back to 2018

I. The beginning

2018: Fundamentals of high-NA EUV imaging
→ Development of the Hybrid Mask Model
A. Erdmann, et al., https://doi.org/10.1117/12.2515678

II. What is the optimum mask for high NA EUV? ... or "Pathfinding the perfect EUV mask"

2019: Role of the mask multilayer (ML)

→ idealized ML model, ML properties and imaging:
H. Mesilhy, et al., https://doi.org/10.1117/12.2551870

2020: Role of the mask absorber

 \rightarrow physics of low-n materials: waveguide effects,

"double diffraction"

H. Mesilhy, et al., https://doi.org/10.1117/12.2587948

H. Mesilhy, et al., https://doi.org/10.1117/1.JMM.20.2.021004

2021: Imaging characteristics of low-n absorbers

 → impact of focus, illumination, biasing & tonality for single pitch Line/Spaces and Contact Holes
H. Mesilhy, et al., https://doi.org/10.1117/12.2601243

III. Multi-feature imaging, imaging improvements techniques

2022: Imaging solutions for multi-pitch L/S imaging scenarios

→ imaging tradeoffs between Contrast, Throughput Depth of Focus

H. Mesilhy, et al., https://doi.org/10.1117/12.2614174

- → demonstrate the potential of split pupil exposures on Line/Spaces
- **2023**: Split Exposure imaging method on 2D patterns Intrinsic roughness for Metal Oxide photoresists

Public

Making a transistor

