

Fraunhofer IISB

Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB

Modelling of Semiconductor Crystal Growth Processes and its Challenges

Jochen Friedrich,

Marc Hainke, Holger Koch, Christian Kranert, Hossein Torkashvand, Markus Zenk

IISB Annual Symposium 2023 "40 Years of Simulation at IISB" Erlangen, October 12, 2023

The quality of crystals and the yield in the industrial production

is determined by the presence of

crystal defects

The formation of crystal defects depends mainly on the heat & mass transport processes occurring during crystal growth! A quantitative description of the influence of the heat and mass transfer processes on the crystal quality is usually only possible by simulation of the whole crystal growth apparatus.

Physical phenomena to be considered for modeling of crystal growth processes

- 🗆 × Conduction: an-isotropic material properties Visualization Analysis Temperature Radiation: gray emitting surfaces using the view factor method more accurate models for other optical media with absorption, scattering, etc. Convection: laminar and turbulent convection in gas and melt influence of various external forces (rotation, steady or time-dependent magnetic fields) Crystal Heating method: resistance, inductive, optical heating Phase transition: models for treating the growing interface (Stephan problem, facetted growth) Melt Species Transport: transport, segregation, reactions Temperature (K Heater Crystal defects: von Mises stress, plastic deformation, point defects and their reactions r = 0.97730 z = 1.98546 file = cg6000_25mmh

Requirements on modeling in the field of Silicon Czochralski crystal growth

Dimensions

Pullerdiameter: 1500mrCrystaldiameter: 300mmCruciblediameter: 900mmBoundary layers (BL)thickness: 0.1mmMesh size in BLsize: 0.01mm

diameter: 1500mm, height: > 5000mm diameter: 300mm, height: 3000mm diameter: 900mm, 500mm thickness: 0.1mm size: 0.01mm

Real Multi Scale Problem: 6 Orders of Magnitude!

⇒ A fully 3D, time-dependent model of the whole puller is still impossible!
⇒ A quasi stationary, 2D-3D coupled model is the standard approach today

Modeling approach using 2D-3D coupling via Reynold's averaging method^{1,2}

¹ J. Fainberg et al., Journal of Crystal Growth 303 (2007), 124

² T. Jung et al., Journal of Crystal Growth 368 (2013), 7

Realistic interface shape and oxygen concentration

Modeling approach using 2D-3D coupling via Reynold's averaging method^{1,2}

¹ J. Fainberg et al., Journal of Crystal Growth 303 (2007), 124 ² T. Jung et al., Journal of Crystal Growth 368 (2013), 7

More than 10 2D-3D cycles are typically needed until convergence \rightarrow 30 days total computation time per single data point!

Optimization of hot zone design to achieve maximum possible pull speed without crystal twisting

Increase of charge weight from 100kg to 300kg and pull speed from 1mm/min to 2mm/min and reduction of power demand from 0.6kW/kg to 0.2kW/kg by optimization of hot zone

Inverse Problem

forward probem: $\{P_m\} \Rightarrow T(x)$

given M heater powers $P_m \Rightarrow$ compute temperature profile T(x) problem is well posed (Small changes in BC lead to small effects in solution)

inverse problem: $\{T(x_n)\} \Rightarrow \{P_m\}$ given N temperatures $\{\vartheta_1, ..., \vartheta_N\}$ at points $\{x_1, ..., x_N\} \Rightarrow$ find $P_m : T(x_n)=\vartheta_{n_n} \forall n \in \{1,...,N\}$

problem is ill-posed (Small changes in BC can lead to big effects in solution)

strategy of solution:

minimize cost function via gradient descent

many evaluations of forward problem problem specific properties can help to reduce the computational costs

M. Kurz et al, Journal of Crystal Growth 198/199 (1999) 101-106

Inverse Problem: Process development with respect to low thermal stress

Grow material with low dislocations densities

under relative high growth and cooling rates, i.e.

• flat interface resp. low thermal stress field in the crystal ($\vartheta_1 - \vartheta_3 = 0$)

under certain constraints, e.g.

• certain axial temperature gradient in the crystal

$$(\vartheta_1 - \vartheta_2 = \text{Const. A})$$

- an upper limit for the overheating in the melt $(\vartheta_4 < \text{Const. B})$
- optimizing geometrical details, e.g. crucible support
- optimizing the heater temperatures (power) versus time using inverse simulation

M. Kurz et al, Journal of Crystal Growth 198/199 (1999) 101-106

Optimization of heater temperature-time profiles T (x,t) for VGF-growth of GaAs by inverse simulation

B. Birkmann et al, Journal of Crystal Growth 211 (2000) 157-162

Genetic Algorithms: Demonstration of different Use Cases

Use case 1: Automatic optimization of the heat shield design and heater configuration with respect to highest axial temperature gradient G by using a very simplified Cz model

T. Fühner et al. J. Crystal Growth 266 (2004) 229

Genetic Algorithms: Demonstration of different Use Cases

Use case 2: Optimization of Material Distribution in a very simplified VGF Furnace within 3 days on 14 CPUs (40 000 single thermal simulations).

	T _{top} [K]	T _{max} [K]	Gradient [K/m]	σ _{vMises} [MPa]
Required	1516< T < 1536	<1775	800	
Seed	1537	1775	853	0.4
Cone	1525	1776	785	1.0
Cylinder	1516	1767	795	1.0

Left: optimized material distribution; right: Maximum temperature in the melt $T_{top,}$ in the facility T_{max} , temperature gradient at the interface in the crystal, and max. von Mises stress for the 3 growth stages.

T. Fühner et al. J. Crystal Growth 266 (2004) 229

Machine Learning in Simulation of Crystal Growth Processes Personal conclusion

The computation time for real problems is usually too long so that ML can become a tool for daily use.

Machine Learning in Simulation of Crystal Growth Processes Personal conclusion

Adadptive Design of Experiments

Intelligent process control

Minimization of CFD simulations

If we will have identified the right use cases, ML will be definitely helpful!

Summary

- Modeling is an indispensable tool in the field of crystal growth and epitaxy
- Modeling of crystal growth and epitaxy requires a wide range of physical phenomena to be considered
- Modeling of the Cz Si crystal growth process is still a very challenging task
- Machine learning in crystal growth and epitaxy is helpful, but needs the right use cases

