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The quality of crystals and the yield in the industrial production
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The formation of crystal defects depends mainly on the 
heat & mass transport processes occurring during crystal growth!

A quantitative description of the influence of the heat and mass transfer 
processes on the crystal quality is usually only possible by simulation of the 

whole crystal growth apparatus.
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Physical phenomena to be considered 
for modeling of crystal growth processes
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Conduction:  an-isotropic material properties 
Radiation:  gray emitting surfaces using the view factor method
   more accurate models 
   for other optical media with absorption, scattering, etc.
Convection:  laminar and turbulent convection in gas and melt
   influence of various external forces 
   (rotation, steady or time-dependent magnetic fields) 
Heating method:  resistance, inductive, optical heating
Phase transition:  models for treating the growing interface 
   (Stephan problem, facetted growth)
Species Transport:  transport, segregation, reactions
Crystal defects:  von Mises stress, plastic deformation, 
   point defects and their reactions
 

Heater

Crystal

Melt
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Requirements on modeling
in the field of Silicon Czochralski crystal growth
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Dimensions
Puller  diameter: 1500mm, height: > 5000mm
Crystal  diameter: 300mm, height: 3000mm
Crucible diameter: 900mm, 500mm
Boundary layers (BL) thickness: 0.1mm
Mesh size in BL size: 0.01mm

Extreme requirements on meshing!
 A fully 3D, time-dependent model of the whole puller is still 

impossible!
 A quasi stationary, 2D-3D coupled model 

is the standard approach today 

Real Multi Scale Problem: 6 Orders of Magnitude!
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Modeling approach using
2D-3D coupling via Reynold’s averaging method1,2
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1 J. Fainberg et al., Journal of Crystal Growth 303 (2007), 124 
2 T. Jung et al., Journal of Crystal Growth 368 (2013), 7
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Modeling approach using
2D-3D coupling via Reynold’s averaging method1,2
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quasi-stationary 2D

Transient 3D
LES (1000s, 0.025s)

boundary conditions at 
3D interface

azimuthal averaging
(r, z) plane

Reynolds averaging

turbulent
heat flux
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More than 10 2D-3D cycles are typically needed until convergence
 30 days total computation time per single data point!

Convergence behavior

1 J. Fainberg et al., Journal of Crystal Growth 303 (2007), 124 
2 T. Jung et al., Journal of Crystal Growth 368 (2013), 7
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Optimization of hot zone design to achieve maximum possible pull speed
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Increase of charge weight from 100kg to 300kg and pull speed from 1mm/min to 2mm/min 
and reduction of power demand from 0.6kW/kg to 0.2kW/kg by optimization of hot zone 

J. Friedrich, T. Jung, M. Trempa, C. Reimann, A. Denisov, A. Muehe, Journal of Crystal Growth 524 (2019) 125168
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Machine Learning in Simulation of Crystal Growth Processes 
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Inverse Problem

forward probem: {Pm} ⇒ T(x)
given M heater powers Pm ⇒ compute temperature profile T(x) 
problem is well posed (Small changes in BC lead to small effects in solution)

inverse problem: {T(xn)} ⇒ {Pm}
given N temperatures {ϑ1, ... ϑN}  at points {x1, ... xN} ⇒ find Pm : T(xn)=ϑn , ∀ n ∈
{1,..,N}
problem is ill-posed (Small changes in BC can lead to big effects in solution)

strategy of solution:
minimize cost function via gradient descent
many evaluations of forward problem
problem specific properties can help
to reduce the computational costs

∑∑ =+−
m

mnn
n

n PxTw min)(
2

))((
2
1 22 µϑ

 { {

Cost of target deviation Regularization if N<M
M. Kurz et al, Journal of Crystal Growth 198/199 (1999) 101-106

First time introduced in crystal growth community by Fraunhofer IISB 1999
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Machine Learning in Simulation of Crystal Growth Processes 
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Inverse Problem: Process development with respect to low thermal stress

Grow material with low dislocations densities 
under relative high growth and cooling rates, i.e. 

• flat interface resp. low thermal stress field in the crystal (ϑ1- ϑ3 = 0)

under certain constraints, e.g. 
• certain axial temperature gradient in the crystal 
 (ϑ1- ϑ2 = Const. A)
• an upper limit for the overheating in the melt 
 (ϑ4 <  Const. B)

by 
• optimizing geometrical details, e.g. crucible support
• optimizing the heater temperatures (power) versus time using inverse simulation

M. Kurz et al, Journal of Crystal Growth 198/199 (1999) 101-106

First time introduced in crystal growth community by Fraunhofer IISB 1999
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Machine Learning in Simulation of Crystal Growth Processes 
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Optimization of heater temperature-time profiles T (x,t) for VGF-growth of GaAs by inverse simulation

Computed  von Mises stress vs. time for two processes

Cooling Down

Process 41 (optimized): 
EPD = 320cm-2

Computed max. von Mises stress in 3”GaAs versus process time for a not-
optimized and optimized cooling down process (top). Microscope images 
of etch GaAs wafers prepared from crystals grown under not-optimized 
(right top) and optimized (right bottom) cooling down conditions

Process 38 (not-optimized): 
EPD = 1070cm-2

B. Birkmann et al, Journal of Crystal Growth 211 (2000) 157-162

First time introduced in crystal growth community by Fraunhofer IISB 1999
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Machine Learning in Simulation of Crystal Growth Processes 
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Genetic Algorithms: Demonstration of different Use Cases

First time introduced in crystal growth community by Fraunhofer IISB 2004

Use case 1: Automatic optimization of the heat shield design and heater configuration 
  with respect to highest axial temperature gradient G by using a very simplified Cz model

Left: Czochralski set-up 
for 100mm Si crystals.
Right: G and maximum 
temperature in the melt 
Tmax as a function of the 
number of generations n.

T. Fühner et al. J. Crystal Growth 266 (2004) 229 
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Genetic Algorithms: Demonstration of different Use Cases

First time introduced in crystal growth community by Fraunhofer IISB 2004

Use case 2: Optimization of Material Distribution in a very simplified VGF Furnace 
  within 3 days on 14 CPUs (40 000 single thermal simulations).

T. Fühner et al. J. Crystal Growth 266 (2004) 229 

13

9,4

15.8

12.619.6

13,2
19.47

11.2

4,6
5,8

0.6

1

Th
er

m
al

 c
on

du
ct

iv
iti

es
 [W

/K
m

]

Ttop

[K]
Tmax

[K]
Gradient 

[K/m]
σvMises 
[MPa]

Required 1516< T < 
1536 <1775 800

Seed 1537 1775 853 0.4

Cone 1525 1776 785 1.0

Cylinder 1516 1767 795 1.0

Left: optimized material distribution; right: Maximum temperature in 
the melt Ttop, in the facility Tmax, temperature gradient at the interface 
in the crystal, and max. von Mises stress for the 3 growth stages.
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Machine Learning in Simulation of Crystal Growth Processes 
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Personal conclusion

The computation time for real problems is usually too long 
so that ML can become a tool for daily use.
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Personal conclusion

If we will have identified the right use cases,
ML will be definitely helpful! 

Adadptive Design of Experiments

Minimization of CFD simulations

Intelligent process control
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Summary
• Modeling is an indispensable tool in the field of crystal growth and epitaxy
• Modeling of crystal growth and epitaxy requires a wide range of physical 

phenomena to be considered
• Modeling of the Cz Si crystal growth process is still a very challenging task
• Machine learning in crystal growth and epitaxy  is helpful, but needs the right use 

cases
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