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Qubits: Physical System

General Properties

▪ Any quantum 2-state system can act as a qubit

▪ However, for useful qubit additional properties are necessary: 

▪ Long relaxation and decoherence times

▪ Lifespan of the qubit’s state (e.g., superconducting qubits 

~100 µs; trapped-ion qubits ~10 min)

▪ Scalable

▪ One qubit not enough for computing, required are hundreds 

and more (record: 433 qubits)

▪ Controllable

▪ Qubits need to be manipulated and read out, otherwise we 

cannot do anything

▪ Efficiently manufacturable

▪ Ideally no variation between qubits (and cheap production)

© Fraunhofer IISB

Qubit Architectures

▪ Huge number of different architectures possible, e.g., color centers, 

double quantum dots, superconducting circuits, trapped ions, trapped 

atoms, etc.

J. M. Nichol, et al., npj
Quantum Information 3, 3 
(2017)

T. E. Roth, et al., 
arXiv:2106.11352 (2021)

2 double quantum dot

qubits
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Some Manufacturers
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Munich Quantum Valley

Building a Bavarian Quantum Computer

▪ Large Bavarian research project 10/2021 – 09/2026

▪ From qubit research through integration and application to 

education

▪ IISB contributes to consortia

▪ K6 “Scalable Hardware & Systems Engineering” (SHARE) 

▪ K7 “Quantum Algorithms for Application, Cloud & Industry” 

(QACI)
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Superconducting Qubits

Architectures

▪ Several different architectures of superconducting qubits

▪ Very different physics for different architectures

▪ All of them based on Josephson junctions

© Fraunhofer IISB

Josephson junctions

▪ Superconductor-Insulator-Superconductor junctions

Aluminum

Aluminum

AlOxCharge qubit Flux qubit Phase qubit

Transmon

+
-

+
-

▪ Since superconductors are required, 

cryogenic temperatures are 

essential (usually ~ mK)

▪ Josephson effect: Supercurrent 

through the junction without 

external voltage

▪ Electrical transport based on tunneling effect

▪ Acts as nonlinear inductance, leading to anharmonicity in the 

oscillator circuits that are the qubits

▪ Several tasks identified which need simulation support

▪ Here 2 examples
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Simulations for Josephson Junctions

© Fraunhofer IISB

Aluminum oxidation

▪ Questions: How does Aluminum oxidize? Are their possibilities to 

improve the oxidation process? 

▪ Simple model: Cabrera-Mott theory with corrections by Ghez [1,2]

d𝑋

d𝑡
= 2𝑢 sinh

𝑋1
𝑋

, solved by
1

𝑋
= −

1

𝑋1
ln

𝑡

𝑋2
+ ln𝑋1𝑢

▪ Calibration based on experimental data from Jeurgens [3]

Impact of the oxide

▪ Question: What is the impact of the oxide properties on the current? 

▪ Create oxide with 

Molecular Dynamics

▪ I(V) curve calculated using 

Nonequilibrium Green’s 

Functions Method

▪ Differences in the I(V) curve 

due to oxide stoichiometry

▪ Also differences due to 

oxide thickness

[1] N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1949) [2] R. Ghez, J. Chem. Phys. 58, 1838 (1973) [3] L. P. H. Jeurgens, et al., J. Appl. Phys. 92, 1649 (2002)
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Control Electronics

Controller and Read-out

▪ Qubits need to be controlled and read-out: Most 

convenient is electronic read-out

▪ Controller made in classical electronics: CMOS technology

© Fraunhofer IISB

© IBM

qubits array

Temperature strategies

▪ State-of-the-art quantum computers

▪ Qubits at cryogenic temperatures

▪ Controller at room temperatures

▪ Not scalable system, too many cable connections

▪ Future quantum computers

▪ Qubits and controller at cryogenic temperatures

▪ More integrated systems

▪ Enable large scale quantum computers
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Control Electronics at Cryogenic Temperatures

© Fraunhofer IISB

Transistors at cryogenic temperatures

▪ Transistors behave differently than at room temperatures

▪ Current simulation models do not work and need to be adapted

▪ Design of controller based on simulations of individual transistors

▪ Question: How do transistors behave at cryogenic temperatures?

Conventional models 

of 28-nm commercial 

bulk CMOS 

technology

Some results 

at T= 3K

Generic compact model

describing device architecture

Model parameter extraction

Measured electrical 

characteristics 

Final compact model in PDK

describing a specific technology
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(Logical) Qubits

General Properties

▪ Bit: Classical 2-state system with discrete states 

(e.g., coin flip) 

▪ Qubit: Quantum 2-state system (e.g., spin ½)

▪ Superposition: 

▪ Qubit can be in any state on Bloch sphere 

until measured

𝜓 = 𝛼 0 + 𝛽|1⟩

▪ After measurement: 𝜓 = 0  or 𝜓 = |1⟩ 

with probability 𝛼² and 𝛽²

▪ Entanglement:

▪ State space (“information”) scales with 2𝑛

Scaling Example

▪ 10 Qubits : 210 = 1,024 values

▪ 100 Qubits: 2100 = more values than stars in 

the known universe

© Fraunhofer IISB

Volkswagen. 2019. "Where is the Electron and How Many of Them?" Volkswagen Group. Accessed 2021-12-27. 
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… and the Curse of Combinatorial Problems

© Fraunhofer IISB

As the number of possible paths grows exponentially with the number of nodes in the 

graph, quantum advantage is to be expected. 

Task: Connect all nodes while minimizing the total length of the edges
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Real World Applications

© Fraunhofer IISB

Combinatorial 
Problems
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Quantum Approximate Optimization Algorithm

Unit Commitment Problem

▪ Required demand needs to be met by power plats at each 

timestep while minimizing the cost of energy production

▪ Mixed Integer Non-Linear Problem 

▪ Classical Solution: MIP Solvers (CPLEX, Gurobi)

Quantum Approximate Optimization Algorithm (QAOA)

▪ Each binary variable can be encoded into one qubit

▪ Problem is encoded into quantum circuit

▪ Parameters of quantum circuit are optimized using classical optimizer

▪ QAOA is a hybrid quantum classical algorithm

© Fraunhofer IISB

A = 30$/h
B = 25 $/MWh
C = 100 $ / MWh²
Pmin = 100 MW
Pmax = 300 MW 

A = 50$/h
B = 10 $/MWh
C = 80 $ / MWh²
Pmin = 100 MW
Pmax = 300 MW 

A = 20$/h
B = 30 $/MWh
C = 120 $ / MWh²
Pmin = 500 MW
Pmax = 900 MW 

A = 20$/h
B = 20 $/MWh
C = 70 $ / MWh²
Pmin = 0 MW
Pmax = 900 MW 

p = 250 MW1

p = 250 MW

p = 500 MW

p = 250 MW

Total cost = $4.1 * 107 Total cost = $5.4 * 107

4-unit system, L = 1000 MW

1

1

0

0

p = 600 MW

p = 400 MW

0

1

1

p = 250 MW

p = 250 MW
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Quantum Approximate Optimization Algorithm

State of the Art

▪ Access to 27 Qubit System IBM Q in Ehningen 
▪ Evaluation of classical optimizers for QAOA 
▪ Great difficulties remain qubit number and noise

© Fraunhofer IISB

Classical Optimizer

Gleißner, Peter, Georg Kruse, and Andreas Roßkopf. 
"Restricted Global Optimization for QAOA." arXiv preprint 
arXiv:2309.12181 (2023). 

Pagano, Guido, et al. "Quantum approximate optimization of the long-range Ising model with a trapped-ion 
quantum simulator." Proceedings of the National Academy of Sciences 117.41 (2020): 25396-25401.



Thank you for your attention!
—
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