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Quantum Computer
Qubits: Physical System

General Properties Qubit Architectures
= Any quantum 2-state system can act as a qubit = Huge number of different architectures possible, e.g., color centers,
= However, for useful qubit additional properties are necessary: double quantum dots, superconducting circuits, trapped ions, trapped

atoms, etc.

Long relaxation and decoherence times
Lifespan of the qubit’s state (e.g., superconducting qubits
~100 ps; trapped-ion qubits ~10 min)

2 double quantum dot

qubits

J. M. Nichol, et al., npj
Quantum Information 3, 3
(2017)

Scalable
One qubit not enough for computing, required are hundreds

and more (record: 433 qubits) Superconducting

Transmon qubit

Controllable
Qubits need to be manipulated and read out, otherwise we

. T. E. Roth, et al,,
cannot do anything

arXiv:2106.11352 (2021)

Efficiently manufacturable
Ideally no variation between qubits (and cheap production)

Transmon qubit SQUID Josephson junction
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Quantum Computer
Some Manufacturers

IBM Quantum
Google Al
Quantum

rigettl
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Quantum Computer
Munich Quantum Valley

Munich
Quantum
Valley

Building a Bavarian Quantum Computer

= Large Bavarian research project 10/2021 — 09/2026
= From qubit research through integration and application to
education

= |ISB contributes to consortia
= K6 “Scalable Hardware & Systems Engineering” (SHARE)
= K7 "Quantum Algorithms for Application, Cloud & Industry”
(QACI)
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Simulation for Quantum Computers
Superconducting Qubits

Architectures

= Several different architectures of superconducting qubits

Charge qubit Flux qubit Phase qubit
| |

X X ® | X

Transmon

= Very different physics for different architectures
= All of them based on Josephson junctions
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Josephson junctions

Public

Superconductor-Insulator-Superconductor junctions

Since superconductors are required,
cryogenic temperatures are
essential (usually ~ mK)

Josephson effect: Supercurrent
through the junction without
external voltage

AlOx

Aluminum l

I Aluminum

Electrical transport based on tunneling effect
Acts as nonlinear inductance, leading to anharmonicity in the
oscillator circuits that are the qubits

Several tasks identified which need simulation support
Here 2 examples
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Simulation for Quantum Computers
Simulations for Josephson Junctions

Aluminum oxidation

= Questions: How does Aluminum oxidize? Are their possibilities to
improve the oxidation process?
= Simple model: Cabrera-Mott theory with corrections by Ghez [1,2]

dX—z 'hX1 lved b 1_ 1(1 t+1x)
T u sin X ,solve yX— X, an nX,u

Impact of the oxide

= Question: What is the impact of the oxide properties on the current?

= Calibration based on experimental data from Jeurgens [3] , _
ol ; ; ; A —— = Create oxide with
T . Molecular Dynamics
081 S0l . = 1(V) curve calculated using
207 ; Nonequilibrium Green'’s
;‘30.6__ il's" Functions Method =
- = Differences in the I(V) curve
o Lot ooec due to oxide stoichiometry |
oatl— | - 300°C = Also differences due to
0 500 1000 1500 10° R oxide thickness S e, o
t(s) t/X? (s nm~2)
[1] N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1949) [2] R. Ghez, J. Chem. Phys. 58, 1838 (1973) [3] L. P. H. Jeurgens, et al., J. Appl. Phys. 92, 1649 (2002)
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Simulation for Quantum Computers
Control Electronics

Room Temperature

Controller and Read-out

Lab Equipment / FPGA

= Qubits need to be controlled and read-out: Most
convenient is electronic read-out akewin [

| Digital waveform memory and |
i control

= Controller made in classical electronics: CMOS technology L=

Cryo RF-Pulse Generation for
XY-Drive

Temperature strategies ::‘::‘:

= State-of-the-art quantum computers ”T.m
Qubits at cryogenic temperatures B— l/ o
Controller at room temperatures <1Kelvin f

Not scalable system, too many cable connections ’
= Future quantum computers
Qubits and controller at cryogenic temperatures

More integrated systems E C D [; |
Enable large scale quantum computers
| ]
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Simulation for Quantum Computers
Control Electronics at Cryogenic Temperatures

Transistors at cryogenic temperatures

= Transistors behave differently than at room temperatures

= Current simulation models do not work and need to be adapted
= Design of controller based on simulations of individual transistors
= Question: How do transistors behave at cryogenic temperatures?

Measured electrical Generic compact model

characteristics describing device architecture

\ /

Model parameter extraction

|

Final compact model in PDK
describing a specific technology
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Quantum Computing
(Logical) Qubits

General Properties

= Bit: Classical 2-state system with discrete states

(e.g., coin flip)
= Qubit: Quantum 2-state system (e.g., spin 2)
= Superposition:
Qubit can be in any state on Bloch sphere
until measured
[Y) = al0) + B|1)
After measurement: [¢) = |0) or [¢) = |1)
with probability @? and 2
= Entanglement:
State space (“information”) scales with 2™

Scaling Example

= 10 Qubits : 21° = 1,024 values
= 100 Qubits: 2199 = more values than stars in
the known universe
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Classical Bit quantum bit “qubit”

Binary system Arbitrarily manipulable two-state quantum system
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SUPERPOSITION

Volkswagen. 2019. "Where is the Electron and How Many of Them?" Volkswagen Group. Accessed 2021-12-27.
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Quantum Computing
... and the Curse of Combinatorial Problems

Task: Connect all nodes while minimizing the total length of the edges

As the number of possible paths grows exponentially with the number of nodes in the
graph, quantum advantage is to be expected.

\
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Quantum

Computing

Real World Applications
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Quantum Computing at IISB
Quantum Approximate Optimization Algorithm

4-unit system, L = 1000 MW

Unit Commitment Problem A = 30%/h

B =25$/MWh
C=100S/ MWh?

= Required demand needs to be met by power plats at each Bt = 100 MW
timestep while minimizing the cost of energy production Pmax = 300 MW

= Mixed Integer Non-Linear Problem

= Classical Solution: MIP Solvers (CPLEX, Gurobi)

Quantum Approximate Optimization Algorithm (QAOA)

= Each binary variable can be encoded into one qubit

= Problem is encoded into quantum circuit

= Parameters of quantum circuit are optimized using classical optimizer
= QAOA is a hybrid quantum classical algorithm

A =505/h A =205/h A =205/h
B=10S/MWh B=30S/MWh B=20S/MWh
C=80S/MWh? C=120S/ MWh? C=70S/MWh?
Pmin = 100 MW Pmin = 500 MW Pmin =0 MW
Pmax = 300 MW Pmax = 900 MW Pmax = 900 MW

p = 600 MW

M o =400 MW

Total cost = $4.1 * 107 Total cost = $5.4 * 107
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Quantum Computing at IISB
Quantum Approximate Optimization Algorithm

.

4
¢

............................

Pagano, Guido, et al. "Quantum approximate optimization of the long-range Ising model with a trapped-ion
guantum simulator." Proceedings of the National Academy of Sciences 117.41 (2020): 25396-25401.

State of the Art

= Access to 27 Qubit System IBM Q in Ehningen
= Evaluation of classical optimizers for QAOA
= QGreat difficulties remain qubit number and noise
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Function evaluations

GleiBner, Peter, Georg Kruse, and Andreas RoBkopf.
"Restricted Global Optimization for QAOA." arXiv preprint
arXiv:2309.12181 (2023).
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