Wide Bandwidth PCB Rogowski Coil Current Sensor with Droop Suppression and DC Restoration for In-Situ Inverter Measurements

Simon Quergfelder^a, Julian Sax^a, Thomas Heckel^a, Bernd Eckardt^a, Martin März^{a,b}

simon.quergfelder@iisb.fraunhofer.de, Schottkystraße 10, 91058 Erlangen, Germany

^a Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany

^b Chair of Power Electronics, Friedrich-Alexander-University Erlangen-Nuremberg, Nuremberg, Germany

1 PCB Rogowski Coil Current Sensor (RCCS)

Drawbacks of Current Solutions

- Susceptible to droop effects
- Input stage sensitive to parasitic offsets
- Complex implementation of DC offset restoration

$R_{\rm R}$ $L_{\rm R}$ $M \frac{{ m d}i_{ m SW}}{{ m d}t}$ $C_{\rm R}$ $R_{\rm T}$ $V_{ m rog}$

Arrangement of RCCS for current measurement in a half-bridge module

Proposed RCCS

- Minimally invasive WBG half-bridge switch current measurement
- All-in-one solution:
 - Switch characterization
 - Fast overcurrent protection
 - Phase current reconstruction

DC- Coil DC+ Coil Gate Terminals Integrating Circuit 50 Ω Output Driver Supply Terminal

Implementation of the RCCSs for switch current measurement in a SiC half-bridge module

2 Design of PCB Rogowski Coil

Mechanical Boundaries

- Module space → rectangular PCB
- Minimally invasive placement
 → preserve commutation cell

Coil Study

- Simulation of 48 coil designs using Ansys HFSS 3D FEM
- Evaluation of sensitivity ($\sim M$) versus bandwidth ($\sim f_{\rm res}$)
- Enhanced immunity to magnetic stray fields via internal return path

• d = 1.0 mm • d = 1.6 mm — N Dependency

Mutual inductance M versus self-resonancefrequency f_{res} for different parameter sets

PCB thickness d eliminates the trade-off between M and f_{res}

B Design of Novel Integrating Circuit

Conventional Integrator Design

- DC gain (G_{DC}) and lower cutoff frequency (f_{LF}) linked
- Inherent tradeoff:droop vs parasitic offset

Proposed integrating circuit

Novel Integrator Design

- Loopback:Cancellation of parasitic DC gain
- Elimination of the droop-offset compromise
- No hard boundary for lower frequency
- Low-impedance termination:
 Reduction of dynamic range
 enables high overall bandwidth

DC Signal Restoration Leveraging zero-current state in switched applications Preservation of DC signal component by disabling loopback during nonzero current to the component to the compon

 $f ext{ in } Hz$ Simulated transfer behavior of proposed RCCS

Benefits through combination:

Paracitic DC offset cancelation:

Parasitic DC offset cancelation and low-impedance termination allow wide bandwidth operation & DC signal preservation

4 Verification of Design

Verification in Frequency Domain

- LC resonant circuit for monofrequent excitation
- Constant amplitude up to at least 75 MHz

Verification in Time Domain

- Measurement in buck converter
 → Signal offset remains
- Accurate low inductance double pulse with ringing of 42 MHz

Double-pulse test measurement with $100m\Omega$ SMD shunt resistor array as reference

Conclusion

- Minimally invasive PCB sensor
- Cost-effective and versatile: Characterization, protection & phase current
- **⊘** High bandwidth: > 75 MHz
- Integration into power module
- Modelling and measurement of upper bandwidth limit
- Further investigation of external field influence