The Tunneling Field-Effect Transistor as Novel Device Concept for High-Frequency Hard-Switching Power Electronics J. F. Dick^{1,a}, J. Schulze^{1,2} ## **Motivation and Device Concept** - Increasing converter power density \rightarrow shrink energy storing passive components [1] - > Faster switching to compensate smaller energy storing passive components - Switching / dynamic loss is a function of the input capacitance of the power switch [2] - → Goal: Device concept with comparable static and reduced dynamic loss - Capacitance can be reduced by omitting the channel of a conventional MOSFET and replacing it by a gated p-n junction forming a switchable tunneling contact resembling a tunneling FET with drift zone \rightarrow Power-TFET - Static loss must be optimized to achieve similar R_{on} by tuning the tunneling junction towards $R_T = R_{ch}$ [3] Fig. 1: Schematic of resistive and capaciticve components in a Power-TFET and in a LDMOS ## Technology & Measured Electrical Characteristics - Devices were built on the Fraunhofer IISB 2 µm SiC CMOS process [4] - Device geometry resembles Fig. 1 with 12 µm drift zone and 2 µm channel - Transfer characteristics show typical rounded behavior of a TFET [3, 5] (Fig. 2) and a incredibly low conductivity resulting from the tunneling through the 4H-SiC bandgap \rightarrow Barrier height too high for low on-resistance - Output characteristic of Power-TFET shows non-linear tunneling breakdown at low V_{DS} and saturation above V_{DS} = 13 V (Fig. 3) Breakdown of LDMOS and Power-TFET show similar shape of the characteristic and similar breakdown voltage (Fig. 4) Fig. 2: Transfer characteristics at $V_{DS} = 1 \text{ V}$ Fig. 3: Normalized output characteristics Fig. 4: Breakdown behavior of Power-TFET & LDMOS ## Simulative Tunneling Barrier Optimization - Tunneling through the bandgap of 4H-SiC leads to high tunneling resistance - Solution: Tunneling at a Schottky barrier, since barrier height can be chosen by material combination \rightarrow Additional recess of the semiconductor at the Schottky barrier is needed to achieve best field control of the gate underneath the metal - Low Schottky barrier height leads to a larger leakage current, which can be countered by a junction-barrier-Schottky (JBS) structure, which fully depletes the semiconductor underneath the metal [6] - Transfer characteristic of the Schottky Power-TFET shows steep subthreshold behavior attributed to the gate induced reduction of the depletion at the metal-semiconductor with subsequent rounded tunnel junction switch-on (Fig. 5) - On-state current of the simulated Schottky-Power-TFET with 0.6 eV barrier height approaches the on-current of the simulated LDMOS Fig. 5: Transfer characteristics of Schottky-Power-TFET and LDMOS