Utilizing SiO₂ Reflow for Corner Rounding to Prevent Cracking in Passivation Layers above 500 °C

Julien Körfer, Alexander May, Mathias Rommel, Oleg Rusch, and Michael Jank

julien.koerfer@iisb.fraunhofer.de

Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystrasse 10, 91058 Erlangen, Germany

Motivation

- High-temperature 4H-SiC electronics (500 600 °C) demand robust, crack-resistant passivation [1-2].
- Angular field oxide corners act as stress concentrators, triggering cracks and premature failure.
- \rightarrow SiO₂ reflow enables CMOS-compatible corner rounding to reduce stress without redesign.

Background

Fig. 1. Optical micrographs of samples annealed for 10 h a) at 400 °C, b) 500 °C, c) 600 °C in air and d) 600 °C in vacuum. Cracks appear above 400 °C in both atmospheres.

Fig. 2. SEM images of sample shown in Fig.1 c): a) top view with visible cracks, the green marker indicates the FIB cross-section position shown in b). b) FIB cross-sectional view of Gate structure with crack in passivation layer initiated due to steep SiO_2 edge; c) FIB cross-sectional view (position not shown in a) of crack-free passivation due to rounded SiO_2 edge.

SiO₂-Reflow

■ Glass transition temperature of SiO_2 : $T_g = 1200$ °C [3].

Fig. 3. SiO₂ reflow process schematic and effects, based on [4,5].

Reflow conditions and oxide edge metrics (+ good; o neutral; - bad)

	Process Parameter				Dattana	C - 442 - 44	C:C
Recipe	Gas	Temperature (°C)	Time (min)	Pressure (mbar)	Pattern fidelity	Corner rounding	SiC Surface
V1	Ar	1300	60	20	-	+	-
V2	Ar	1250	30	20	+	0	-
V3	N	1400	45	890	-	+	-
V4	NO	1300	60	890	+	+	-
V5	N + NO	1300	60	890	+	+	0
V6	Ar	1300	60	20	+	_	0

Results

Fig. 4. SEM images of reference SiC oxide edge sample after dry etching before Reflow: a) plan view with in-panel FIB cross-section; b) oblique top view showing a SiO_2 sidewall profile; c) cross-sectional view showing ~89° corner angle and 400 nm SiO_2 thickness.

Fig. 5. SEM images after SiO_2 reflow (Recipe V1: 1300 °C, 60 min, 20 mbar, Ar): a) plan view with in-panel FIB cross-section; b) oblique top view showing step bunching; c) cross-sectional view of the oxide edge showing a corner angle of ~60° and 325 nm SiO_2 thickness.

Fig. 6. SEM images after SiO_2 reflow (Recipe V3: 1400 °C, 45 min, 890 mbar, N_2): a) plan view with in-panel FIB cross-section; b) oblique top view showing SiC surface recession due to evaporation; c) cross-sectional view of the oxide edge showing a corner angle of ~70° and 380 nm SiO_2 thickness.

Fig. 7. SEM images after SiO_2 reflow (Recipe V4: 1300 °C, 60 min, 890 mbar, NO): a) plan view with in-panel FIB cross-section; b) oblique top view of the patterned feature; c) cross-sectional view of the oxide edge showing a corner angle of ~78° and 380 nm SiO_2 thickness.

Summary

- Thermal-stress cracks in passivation above metal-covered, angular oxide steps after > 500 °C processing have been linked to angular oxide corners (~70°, 400 nm).
- SiO_2 reflow rounds angular oxide corners (to ~60–78°) and is expected to reduce crack initiation.
- Standard Ar $/ N_2$ reflow attacks the SiC-surface leading to step bunching / SiC evaporation.

[2] D. Spry et al. Micro- and Nanotechnology Sensors, Systems, and Applications VIII, edited by George T, Dutta AK, Islam MS, 98360N, Micro- and Nanotechnology Sensors, Systems, and Applications VIII, SPIE (2016).

Systems, and Applications VIII, SPIE (2016).

[3] M. Ojovan: Entropy Vol. 10 (2008), p. 334.

