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Epitaxy Fig. 3. Normalized capacitance—voltage (C-V) measurement Fig. 4. Capacitance-voltage ((—V) measurement at 100 kHz
at 100 kHz of 40 devices with planar and trench design on of 12 different designs with varying area on sample 1.

Trench formation sample 1 (TEOS oxide) and sample 2 (oxidized poly Si).
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B Trench MOSCaps differ notably from planar devices on the same wafer.
m Causes: oxide thickness variation, electric-field crowding at corners,

LPCVDTEOS Low temperature : : :
space-charge region extension, charge trapping and flat-band voltage.
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(b) Sample? Al Trench MOSCaps are modelled as three parallel components: mesa C_,
sidewall C,, and bottom C,. Knowing the respective areas allows for
determination of the different capacitances by solving a linear system of
equations [4]:
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Top side metal sputtering and structuring

Backside ohmic contact formation by
laser annealing

Backside contact metal sputtering

C(V) =AnCn(V) + AsCs(V) + ApCp (V).
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Fig. 2. Average leakage current-electric field curve of forty devices for different designs. a) The electric field for the planar and
trench designs is calculated using the planar mesa oxide thickness measured by ellipsometry. b) The electric field for the trench
designs is calculated using the lowest measured oxide thickness determined by focused ion beam cross-section SEM imaging
instead.
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B Using mesa oxide thickness measured by ellipsometry underestimates the

Effective Interface state density D;; ¢ in eV'cm™?

trench MOSCap breakdown field. N I U . ol ]
B Using FIB-SEM oxide thickness is more accurate but still overestimates E-E in eV E-E in eV
because it ignores electric-field/current crowding at the trench bottom. | | | | | | |
. : : . Fig. 6. Average D,, of four devices determined by the high- Fig. 7. Effective D, calculated from the effective
B Accurate values reguire local tOX and a 2D field/ CrOWdlﬂg correction. low and Terman method for a planar and trench design capacitance depicted in Fig. 6 using the Terman method for
with 1 um trench width and 1 um mesa width and an area the top, bottom and trench sidewall for sample 1 and 2.
of 1. mm? on sample 1.
Summary m The effective D, is not yet quantitatively accurate.
— ®m However the effective D;, mesa and bottom correlates to the measured D,
Separation of the different capacitance components of SIC trench MOSCaps IS possiole. for the planar devices and the effectjve D, for the trench to the sidewall.
The error of the fitting can be optimized by carefully selecting the aréas ot the faoricated m [t is well suited for ranking gate-oxide processes and
devices. wafer-to-wafer trends.
The method has to be further optimized by detailed geometric and physics modeling using ® Main limitations are area calibration, local t,, non-uniformity, and
TCAD. unmodeled 2D crowding/fringing.
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