Test & Reliability Rijuta Bagchi

Impact of current density, accumulated injected charge and temperature on bipolar degradation in 4H-SiC PiN diodes

Authors: R. Bagchi¹⁾, J. Leib¹⁾, F. Allibert²⁾, F. Dresel¹⁾, E. Guiot²⁾, J. Biscarrat³⁾, C. Le Royer³⁾ and B. Eckardt¹⁾

- ¹⁾ Fraunhofer IISB, Erlangen, Germany
- ²⁾ Soitec, Parc Techno des Fontaines, France
- ³⁾ Univ. Grenoble Alpes, CEA, Leti, France

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Download Presentations

Introduction

Bipolar Degradation

Source [1] Source [2]

• Bipolar Degradation (BD):

Bipolar currents -> Stacking faults (SSFs) expansion -> Resistance increase -> Forward Voltage degradation

Targets of this study

Impact of Temperature, Current density and Injected Charge

Test Setup

Original Setup

- Two-point measurement
- Bond-Wire (BW) aging
- Significant increase of VF
- Not possible to compare in-situ

Pulse Shape - PCmsec

Improved Setup

Kelvin-Probe implementation

- The measurements including the BW led to a significant error in the forward voltage measurement.
- Solution: Introduced Kelvin–Probe measurement.

Public

Impact of Bond-Wire Resistance

Accurate VF measurement

 Ability to differentiate BW degradation from BD, In-Situ

Signature of Bipolar Degradation

 Skewness observed in curve

Signature of Bipolar Degradation

• Observed kink in the curve, a signature for bipolar degradation.

DUT C25 After stress- UV-PL image

Systematic increase in VF

- Gradual increase in VF
- Present in all stress conditions
 - not Bond Wire degradation
 - not Bipolar Degradation

Impact of Temperature

Temperature control by Pulse Width variation

• Change in duration of the load current (I_L) influences the value of Tvj,max.

Impact of Temperature

Temperature control by Pulse Width variation

Temperature doesn't have a first order impact.

Impact of Temperature

Temperature control by chiller

- Removes possible influence of Pulse Width
- Several DUTs -> same Pulse Width but at different Tvj,max,
- No direct consequence on Bipolar Degradation

Temperature doesn't have a first order impact.

Impact of Current Density

Probability of occurence of Bipolar Degradation (BD)

BD observed above 1000 A/cm²~1500 A/cm²

Impact of Injected Charge

When Bipolar Degradation occurs, it triggers around 50 kC/cm²

Summary

- First study of Bipolar Degradation as a function of accumulated injected charge
- Introduction of In-situ KP measurements (ability to differentiate BD from BW degradation)
- Study of impact of Temperature, Stress current density and Injected charge without parameter interaction.

Conclusions

Temperature is not a first order parameter

Bipolar Degradation triggers above 1000A/cm^2

Critical injected charge was found to be around 50kC/cm^2

Outlook

Improvement on effective Pulse Width

UV Photoluminiscence

Statistical observation for all parameters

Test Bench improvement (PCB integration to test more DUTs at a time)

Image References

[1] Tsuchida, Hidekazu, et al. "Suppression of Bipolar Degradation in 4H-SiC Power Devices by Carrier Lifetime Control." 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019.

[2] Hatta, Naoki, et al. "Reduction of Forward Bias Degradation in 4H-SiC PiN Diodes Fabricated on 4H-SiC Bonded Substrates." Key Engineering Materials 948 (2023): 107-113.

References

[1] Bergman, J. Peder, et al. "Crystal defects as source of anomalous forward voltage increase of 4H-SiC diodes." Materials Science Forum. Vol. 353, 2001.

[2]Tsuchida, Hidekazu, et al. "Suppression of Bipolar Degradation in 4H-SiC Power Devices by Carrier Lifetime Control." 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 2019.

[3] Hatta, Naoki, et al. "Reduction of Forward Bias Degradation in 4H-SiC PiN Diodes Fabricated on 4H-SiC Bonded Substrates." *Key Engineering Materials* 948 (2023): 107-113.

[4] Omote, Kazuhiko. "Crystal defects in SiC wafers and a new X-ray topography system." The Rigaku Journal 29.1 (2013).

[5] Harada, Shunta, et al. "Suppression of stacking fault expansion in a 4H-SiC epitaxial layer by proton irradiation." Scientific Reports 12.1 (2022): 13542.

[6] Laha, S., et al. "Milliseconds Power Cycling (PCmsec) driving bipolar degradation in Silicon Carbide Power Devices." CIPS 2024; 13th International Conference on Integrated Power Electronics Systems. VDE, 2024.

[7] Brosselard, Pierre, et al. "The effect of the temperature on the Bipolar Degradation of 3.3 kV 4H-SiC PiN diodes." 2008 20th International Symposium on Power Semiconductor Devices and IC's. IEEE, 2008.

Thank You for your attention!

Want to know more? Meet us at booth 68!

Contact

Vehicle Eletronics – Test & Reliability Rijuta Bagchi, Scientific Research Associate Tel. +49 9131 761-446 rijuta.bagchi@iisb.fraunhofer.de

Fraunhofer IISB Schottkystraße 10 91058 Erlangen www.iisb.fraunhofer.de

Fraunhofer Institute for Integrated Systems and Device Technology IISB

PC_{DC}

Results: Observed VF shift in the post characterization results.

Backup

Photoluminiscence Results

Stressed at 35A (1750 \text{ A}/cm^2)

W08_C19

Conceptual design of experiment

Sweep test for very short pulsed PCmsec test

- Parameters : Load Current = 45 A (Coolant Temperature = 25 °C -28 °C (Glycol + water))
- PC_{msec} parameters : $t_{on} = 600 \mu s$ and $t_{cooling/off} = 319.40 \ ms$

Pcmsec

45A, ~600k cycles

Current Pulse for W08

- Parameters: Load Current = 45 A (Coolant Temperature = 25 °C -28 °C) (Glycol + water)
- PC_{msec} parameters : $t_{on} = 600~\mu s$ and $t_{cooling/off} = 319.4~ms$ (150ms+150ms+10ms+0.4ms)

