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Need for RUL Prediction of DC Semiconductor Circuit Breakers
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 DC Networks
 Increasingly utilized for e.g., integrating renewable energy.

 DC Circuit Breakers 
 Requirements: Interrupt DC currents without zero-crossing in 

short times.
 Types: Mechanical, Semiconductor (SCCB) and Hybrid.
 SCCBs interrupt currents in a range of microseconds.

 Challenges 
 High currents / voltages and harsh environmental conditions 

stress especially the semiconductor modules of the SCCBs.

Remaining Useful Life (RUL) prediction of SCCBs is essential for reliable operation and efficient usage.
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Lifetime Assessment of DC SCCBs
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Motivation

 Lifetime assessment in power electronics 
 Long history and high research interest.
 In contrast to power converters: less research activity for 

SCCBs but transfer of methods possible.

 Lifetime assessment methods
 Physics-based
 Data-driven
 Hybrid

 Focus of this work
 Data-driven RUL prediction of the semiconductor module 

through forecasting a degradation indicator.

Overview of lifetime assessment methods
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Approach
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Digital Twin Framework

 Develop a digital twin framework for
 Degradation indicator-based RUL prediction according 

to sensor measurements.
 Application in lifetime tests, real-word industrial 

applications, and research on devices.

 Requirements
 Continuous tracking of multiple degradation indicators.
 Integration of historical and real-time data.
 Providing digital services to support predictive 

maintenance.

DC SCCB Demonstrator

𝑅𝑅DS(on) 𝑉𝑉DS(on) 𝑉𝑉G 𝑅𝑅th

DC SCCB Accelerated Lifetime Test

𝑅𝑅DS(on) 𝑉𝑉DS(on) 𝑉𝑉G 𝑅𝑅th

IGBT Power Cycling Dataset

𝑅𝑅th 𝑉𝑉CE(on)

Si MOSFET Reference Dataset (NASA)

𝑅𝑅DS(on)

Overview of data sources for the training 
of RUL prediction models
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Digital Twin Framework

 Architecture
 Design for seamless integration of different data sources.
 Distributed edge-cloud architecture to monitor degradation 

indicators of multiple SCCBs during real-time operation 
across various production sites.

 Key components
 Flow engines: data acquisition and ML pipeline.
 MQTT broker: data transmission and return of results. 
 Central database (DB): stores data, models, and model 

parameters.

Digital twin architecture including main components 
and interfaces for data transformation and ML pipeline

Architecture and Components
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Architecture and Components
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Digital Twin Framework

 Architecture
 Design for seamless integration of different data sources.
 Distributed edge-cloud architecture to monitor degradation 

indicators of multiple SCCBs during real-time operation 
across various production sites.

 Key components
 Flow engines: data acquisition and ML-pipelines
 MQTT broker: data transmission and return of results 
 Central database (DB): stores data, models, and model 

parameters.

 
 Components base implementation

Digital twin architecture including main components 
and interfaces for data transformation and ML pipeline
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Dataset and Data Transformation
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RUL Prediction for a MOSFET Reference Dataset

 MOSFET Reference Dataset
 NASA’s Prognostics Data Repository.
 Thermal and power cycling of Si MOSFETs.
 42 different IRF520Npbf MOSFETs in a TO-220 package.
 𝑅𝑅DS on as degradation indicator.

 Data transformation: Normalization of 𝑅𝑅DS on
 Temperature and degradation dependent.
 Temperature dependency as quadratic relationship: 

�𝑅𝑅DS on , 𝑇𝑇 = 𝑎𝑎 � 𝑇𝑇2 + 𝑏𝑏 � 𝑇𝑇 + 𝑐𝑐. (1)

 Normalization according case temperature: 
𝑅𝑅DS on ,norm,𝑘𝑘 = 𝑅𝑅DS(on),𝑘𝑘 − �𝑅𝑅DS on , 𝑇𝑇, 𝑘𝑘. (2)

𝐑𝐑𝐃𝐃𝐃𝐃 𝐨𝐨𝐨𝐨 vs temperature for run 1-7 of device 9
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Implementation of RUL Algorithm
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RUL Prediction for a MOSFET Reference Dataset

 Exponential degradation model + Kalman filter to           
forecast 𝑅𝑅DS on ,norm.

 𝑅𝑅DS on , norm 𝑡𝑡 = 𝛼𝛼 � 𝑒𝑒(𝛽𝛽 �𝑡𝑡) (3)
 𝑅𝑅DS on , norm, 𝑘𝑘+1 = 1 + 𝛽𝛽 � ∆𝑡𝑡 � 𝑅𝑅DS on , norm, 𝑘𝑘 (4)

 KF predict step: 𝑥𝑥pred, 𝑘𝑘 = 𝐹𝐹𝑘𝑘𝑥𝑥KF,𝑘𝑘−1 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘 (5)

 KF correct step: 𝑥𝑥KF, 𝑘𝑘 = 𝑥𝑥pred,𝑘𝑘 + 𝐾𝐾𝑘𝑘 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥pred, 𝑘𝑘  (6)
 𝑥𝑥KF, 𝑘𝑘 = 𝑅𝑅DS on , norm, KF, 𝑘𝑘
 𝑧𝑧𝑘𝑘 =  𝑅𝑅DS on , norm, 𝑘𝑘

𝑅𝑅DS on , norm
Kalman 

Filter  

βinit
𝑅𝑅DS on , norm,KF

state matrix 𝐹𝐹

0

Kalman filter estimates 𝑹𝑹𝐃𝐃𝐃𝐃 𝐨𝐨𝐨𝐨 ,𝐧𝐧𝐧𝐧𝐧𝐧𝐦𝐦, 𝐊𝐊𝐊𝐊 until 𝒕𝒕𝐩𝐩
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Implementation of RUL Algorithm
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RUL Prediction for a MOSFET Reference Dataset

 Exponential degradation model + Kalman filter to 
forecast 𝑅𝑅DS on ,norm.

 𝑅𝑅DS on , norm 𝑡𝑡 = 𝛼𝛼 � 𝑒𝑒(𝛽𝛽 �𝑡𝑡) (3)
 𝑅𝑅DS on , norm, 𝑘𝑘+1 = 1 + 𝛽𝛽 � ∆𝑡𝑡 � 𝑅𝑅DS on , norm, 𝑘𝑘 (4)

Kalman 
Filter  

βinit
Least 

Squares 
Fitting αupd,p,𝛽𝛽upd,p

Forecast 𝑹𝑹𝐃𝐃𝐃𝐃 𝐨𝐨𝐨𝐨 ,𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐩𝐩 based on Kalman filter 
estimates 
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Implementation of RUL Algorithm
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RUL Prediction for a MOSFET Reference Dataset

 Exponential degradation model + Kalman filter to 
forecast 𝑅𝑅DS on ,norm.

 𝑅𝑅DS on , norm 𝑡𝑡 = 𝛼𝛼 � 𝑒𝑒(𝛽𝛽 �𝑡𝑡) (3)
 𝑅𝑅DS on , norm, 𝑘𝑘+1 = 1 + 𝛽𝛽 � ∆𝑡𝑡 � 𝑅𝑅DS on , norm, 𝑘𝑘 (4)

 𝑡𝑡EOL,p = ⁄log 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡EOL − log 𝛼𝛼 𝛽𝛽 (7) 
 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑡𝑡EOL,p − 𝑡𝑡p (8)

Kalman 
Filter  

βinit
Least 

Squares 
Fitting

Calculate 
EOL, RUL

𝑡𝑡EOL,p,𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅

αupd,p 
𝛽𝛽upd,p

Forecast 𝑹𝑹𝐃𝐃𝐃𝐃 𝐨𝐨𝐨𝐨 ,𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐩𝐩 based on Kalman filter 
estimates 
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Implementation of RUL Algorithm
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RUL Prediction for a MOSFET Reference Dataset

 Exponential degradation model + Kalman filter to 
forecast 𝑅𝑅DS on ,norm.

 𝑅𝑅DS on , norm 𝑡𝑡 = 𝛼𝛼 � 𝑒𝑒(𝛽𝛽 �𝑡𝑡) (3)
 𝑅𝑅DS on , norm, 𝑘𝑘+1 = 1 + 𝛽𝛽 � ∆𝑡𝑡 � 𝑅𝑅DS on , norm, 𝑘𝑘 (4)

 𝑡𝑡EOL,p = ⁄log 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡EOL − log 𝛼𝛼 𝛽𝛽 (7) 
 𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑡𝑡EOL,p − 𝑡𝑡p (8)

Kalman 
Filter  

βupd,p−1
Least 

Squares 
Fitting

Calculate 
EOL, RUL

𝑡𝑡EOL,p,𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅
αupd,p 
𝛽𝛽upd,p 𝑅𝑅𝑅𝑅𝑅𝑅

Forecast 𝑹𝑹𝐃𝐃𝐃𝐃 𝐨𝐨𝐨𝐨 ,𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧,𝐩𝐩 based on Kalman filter 
estimates 
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Results
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RUL Prediction for a MOSFET Reference Dataset

 Base implementation
 Best RUL predictions: 199 - 206 minutes, absolute error: 4 min.
 Afterwards: results slightly diverge.
 Comparable to reference implementation, thus satisfactory.

 Reference implementation (extended Kalman filter)
 Signal is filtered with mean filter before.
 Best RUL prediction:150 min, absolute error: 2 min.

 Planned developments
 Improve prediction at pristine state.
 Generalize algorithms for accelerated lifetime tests and real-

world applications.

 Data from accelerated lifetime tests do not capture all operating 
conditions  future work will incorporate real-world field data.

RUL predictions of base implementation and 
reference implementation
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Motivation
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Demonstrator Setup

 Enable testing for real-world conditions of DC grids to gather 
practical aging behavior data.

 DC networks can vary significantly:
 Grounding systems: TN-S, AC-sided grounding, IT (floating 

high ohmic midpoint grounding).
 Load dynamics: Fast (e.g., welding) vs slow (e.g., PV).
 Grid characteristics: cable length  variations in inductances 

and resistances.
 Faults: Low/high resistive short circuits, ground faults, arc 

faults.

A testing system is developed that can flexibly replicate the diversity of DC grids and potential faults.

Parameter Value Range

Voltage ≤ 1500 V

Nominal current ≤ 100 A

Short-circuit current ≤ 10 kA

Power grid
replication

Inductance ≤ 400 μH
Resistance ≤ 20 mΩ

Capacitance 108 mF up to 850 V
54 mF up to 1500 V

Parameter ranges of the demonstrator
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Conclusion and Outlook

 Objective 
 Ensure reliability of DC SCCBs through accurate RUL predictions and digital twin 

services.

 Achievements
 Base implementation of an RUL prediction in a digital twin framework realized.
 Concept and design phase for a real-world demonstrator completed.

 Future work will include RUL prediction for
 IGBT power cycling data,
 Testing of SCCBs with integrated SiC MOSFETs,
 Data for real-world load profiles collected on the demonstrator setup.

 Challenges
 Generalize models for the different data sets and applications.
 Develop additional ML algorithms to further enhance prediction accuracy.
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Hardware Realization
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Demonstrator Setup

 The demonstrator operates as a single DC line in a sink-source 
configuration (bidirectional energy flow is possible).

 Integration and testing options for single and double pole 
circuit breakers.

 Various DC applications can be simulated by selecting different 
load profiles and grid faults can be introduced.

Regulates grid voltage 
and compensates for 
losses within the system

Mimics cable resistance 
and inductance of 
large-scale networks

Regulates and 
drives nominal 
current

Electric schematic of the demonstrator setup
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