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?
InaccurateBig Data Black Box

ML in Simulation
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… to fulfill future engineering needs

Slide 3

Measurement & Experiment

▪ Provides highest-fidelity ground-truth data 
from reality

▪ Uncovers unknown effects and model gaps; 
foundation for calibration

▪ Essential for verification/validation; defines 
boundary conditions and material 
parameters.

(Numerical) Simulation

▪ Physics-based solvers (e.g., FEM, FDTD); 
established and validated.

▪ Robust with limited data: supports 
parameter sweeps, inter-/extrapolation, and 
DoE with few measurements.

▪ Reproducible with built-in uncertainty 
quantification (e.g., sensitivities, MC).

ML (AI and Big Data)

▪ Automatic feature extraction from raw data 
even for complex, nonlinear physics

▪ Ultra-fast surrogate models for design-
space exploration, optimization, and real-
time control

▪ Highly parallelizable, adaptive via transfer 
and online learning; IP-protected

24.09.2025
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(Numerical) Simulation

▪ Physics-based solvers (e.g., FEM, FDTD); 
established and validated.

▪ Robust with limited data: supports 
parameter sweeps, inter-/extrapolation, and 
DoE with few measurements.

▪ Reproducible with built-in uncertainty 
quantification (e.g., sensitivities, MC).

ML (AI and Big Data)

▪ Automatic feature extraction from raw data 
even for complex, nonlinear physics

▪ Ultra-fast surrogate models for design-
space exploration, optimization, and real-
time control

▪ Highly parallelizable, adaptive via transfer 
and online learning; IP-protected

Scientific Machine Learning (SciML)

PINN: Physics-Informed Neural Network 
PIML: Physics-Informed Machine Learning
FNO: Fourier Neural Operator
DeepONet: Deep Operator Network
Neural ODE: Neural Ordinary Differential 
Equations model 
...

Scientific relevance 

24.09.2025
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Physics-Informed Neural Network – Supervised Learning
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𝐴𝑜𝑢𝑡

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

NN

 Back-Propagation

Input
(Image / Pixel)

Dog 

𝐴𝑟𝑒𝑓= 0 

Cat 

𝐴𝑟𝑒𝑓= 1 

𝐿 = |𝐴𝑟𝑒𝑓 − 𝐴𝑜𝑢𝑡|

“Expertise”
(Data + Labels)

𝑥/𝑦

𝑐

Problem: Image recognition "dog or cat“
Solution: Supervised Learning

Loss Function

(Minimization)
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𝐴𝑜𝑢𝑡

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

NN

 Back-Propagation

Input
(Geometry,
Time, etc.)

“Expertise”
(Physics)

𝑥

𝑦

Problem: Calculation of electromagnetic fields
Solution: Physics-Informed Learning

𝐿𝑝𝑑𝑒 =
1

µ

𝜕2𝐴 𝑥, 𝑦

𝜕𝑥2
−

𝜕2𝐴 𝑥, 𝑦

𝜕𝑦2
− 𝐽(𝑥, 𝑦)

𝐿𝑏𝑐 = ቊ
𝐴 𝑥, 𝑦  − 1, 𝑥, 𝑦  ∈  𝜕Ω

0,  𝑥, 𝑦  ∉  𝜕Ω

𝐿 = |𝐿𝑃𝐷𝐸| + 𝐿𝑏𝑐  +
         + …

Loss Function

(Minimization)
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Formulation

Reaction-diffusion model for concentrations 𝐶Ni, 𝐶SiC, 𝐶C, 𝐶NiSi, 𝐶NiSi2
 depending on time 𝑡 ∈ 0, 𝑇 , space 𝑥 ∈ [0, 𝐿].
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Total depth: 𝐿 = 600 nm.
𝜕𝑡𝐶Ni = 𝜕𝑥 𝐷∗𝜕𝑥𝐶Ni − 𝑘1𝐶Ni𝐶SiC,

𝜕𝑡𝐶SiC = 𝜕𝑥 𝐷∗𝜕𝑥𝐶SiC − 𝑘1𝐶Ni𝐶SiC − 𝑘2𝐶NiSi𝐶SiC,

𝜕𝑡𝐶C = 𝜕𝑥 𝐷∗𝜕𝑥𝐶C + 𝑘1𝐶Ni𝐶SiC + 𝑘2𝐶NiSi𝐶SiC,

𝜕𝑡𝐶NiSi = 𝑘1𝐶Ni𝐶SiC + 𝑘2𝐶NiSi𝐶SiC,

𝜕𝑡𝐶NiSi2
= 𝑘2𝐶NiSi𝐶SiC,

 𝐷∗ = 𝐷Ni
𝐶SiC+𝐶C+𝐶NiSi+𝐶NiSi2

𝐶Ni+𝐶SiC+𝐶C+𝐶NiSi+𝐶NiSi2

,

𝜕𝑥𝐶 𝑥, 𝑡 = 0 for 𝑥 = 0 and 𝑥 = 𝐿 for all components,

𝐶Ni 𝑥, 𝑡 = 0 = 𝐶0,Ni for 0 ≤ 𝑥 ≤ ℎ, 𝐶Ni 𝑥, 𝑡 = 0 = 0 for ℎ ≤ 𝑥 ≤ 𝐿,

𝐶SiC 𝑥, 𝑡 = 0 = 0 for 0 ≤ 𝑥 ≤ ℎ, 𝐶SiC 𝑥, 𝑡 = 0 = 𝐶0,Si for ℎ ≤ 𝑥 ≤ 𝐿,

𝐶C 𝑥, 𝑡 = 0 = 𝐶NiSi 𝑥, 𝑡 = 0 = 𝐶NiSi2
𝑥, 𝑡 = 0 = 0.

Reaction constants:

𝑘1 = 𝑘2 = 6 ⋅ 10−5 nm3

s
.

Heterodiffusion coefficient 𝐷∗. 

Metal diffusivity:

𝐷Ni = 6 ⋅ 10−14cm2

s
.

Total time: T = 1 h.

Initial metal thickness: ℎ = 140 nm, 
and intrinsic concentrations: 𝐶0,Ni = 9 ⋅ 1022cm−3, 

𝐶0,Si = 4.8 ⋅ 1022cm−3.

Reflecting boundaries.
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Solution behaviour
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Solve this system by training a „physics-informed neural network“ (PINN).

• Represent solution as a neural network. 

• Train it by using the problem‘s residuals evaluated at collocation points as loss function.

• Extendable to a „physics-informed neural operator“ (PINO). 

• → Make parameters (initial condition, model parameters like temperature, …) part of neural network‘s input.

• → Arrive at fast to evaluate surrogate model that can, e.g., be used for optimization tasks.
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𝑥

𝑡

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

Parameters
(e.g., ℎ)

PDE loss for Ni. 

Initial condition for Ni. 

Boundary condition for Ni. 
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Overview

Four common architectures for the NN part inside the PINN:

MLP

Multi-Layer Perceptron

mMLP
Modified 

Multi-Layer Perceptron

KAN

Kolmogorov-Arnold Network

cKAN
Chebyshev-based 

Kolmogorov-Arnold network

Source: 
arXiv:2407.19421v1

Source: 
arXiv:2406.02917v1

Source: 
arXiv:2407.19421v1

Sources: arXiv:2406.02917v1, 
arXiv:2405.07200v3 

https://arxiv.org/abs/2407.19421v1
https://arxiv.org/abs/2406.02917v1
https://arxiv.org/abs/2407.19421v1
https://arxiv.org/abs/2406.02917v1
https://arxiv.org/abs/2405.07200v3
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MLPs

• 100 MLP trainings varying in the

• amount of layers {2,3,4,5,6} 
• amount of neurons per layer

{48,64,96,128} 
• amount of iterations

{10𝑘, 20𝑘, 30𝑘, 40𝑘, 50𝑘} 
(Adam optimizer incl. LR decay)
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MLPs

• 100 MLP trainings varying in the

• amount of layers {2,3,4,5,6} layers 
• amount of neurons per layer

{48,64,96,128} 
• amount of iterations

{10𝑘, 20𝑘, 30𝑘, 40𝑘, 50𝑘} 
(Adam optimizer incl. LR decay)

• Clustering and colorcoding

20𝑘
30𝑘 40𝑘

50𝑘

10𝑘
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MLPs

• 100 MLP trainings show …

• best setups with errors of 4%-5% 
• (unsteady) convergence over training 

(10k – 50k steps) for minor amount 
of hidden layers

• overfitting for high(er) amount of 
hidden layers
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mMLPs

• Modified MLPs lead to lower error but 
require longer training time

• Best accuracy: ∼ 3.0 %. 



Public

PINN Results for Silicidation Problem

24.09.2025 Fraunhofer IISB  -  Andreas RosskopfSlide 15

KANs

• KANs need a much longer train time 
and hardly reach MLP accuracy
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cKANs

• KANs need a much longer train time 
and hardly reach MLP accuracy

• cKANs are faster and more stable to 
train and reach lower error than KANs, 
but did not beat mMLPs

Takeaway:

• mMLP reach the lowest error

• (m)MLP reach the best efficiency 
(error vs.  training time)

• Explainable (c)KAN strategies reach 
good results but require 2-3 times of 
the (m)MLP training time
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Silicidation
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Visualisation of the 1D results in a 2D contact.
(Follow-Up Tasks: Resistance calculation & optimization)

Metal 

(Ni) 

Semiconductor

(SiC) 

Interface 

Apply RTP 
(„rapid thermal 

processing“)

Reactions result in

compound 

components: 

C, NiSi, NiSi2

Image: Fraunhofer IISB

24.09.2025
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• Evaluation in general settings without 
needing to retrain model.

• Fast to evaluate surrogate model that 
can, e.g., be used in optimization 
pipelines.

• More details provided in the talk 
by Dr. Christopher Straub later!

• So far: Always considered fixed setting.

• Can be extended to „physics-informed neural operator“, e.g., by 
making initial metal thickness part of input.

𝑥

𝑡

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

Initial metal 
thickness ℎ
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PROMIS

• Reference simulation:
• Time-adaptive FDM solver PROMIS (developed by P. Pichler et al., written in Fortran) with spacial step size 2 nm
• Simulation time (CPU): ∼ 5 seconds

• SciML – PINN Training time for static setup
• Training via DeepXDE using Pytorch on a Tesla Quadro RTX 5000 
• Training time: ~0.5h MLP, ~1h mMLP, 4h-7h KAN and 4h-9h cKAN
• Inference: 1-2ms for 3 time-steps (for all architectures and the same for CPU / GPU)

• SciML – PINN Training time for parametric setup (PINO)
• Training via DeepXDE using Pytorch on a Tesla V100 
• Training time: 3h mMLP
• Inference: CPU 28ms for 3 time-steps and 121 thickness values (as in animation)

GPU 7ms for 3 time-steps and 121 thickness values (as in animation)

Parameteric Setup with 3 timesteps and 121 thickness values: Classic FDM: 10min 
PINO: ~28ms  (Inference on CPU)

https://ieeexplore.ieee.org/document/1270136
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Key takeaways
• SciML bridges simulation, ML (and measurement) to counter the myths: 

not inaccurate, not big-data-only, not a black box (phy-loss & KAN improves interpretability)
• PINNs solve the Ni–SiC reaction–diffusion PDE with reflecting boundaries; 

PINO extends to parametric surrogates (e.g., thickness h)
• mMLP PINNs delivered the best accuracy/efficiency

cKAN was more stable than KAN but did not beat mMLP

Outlook
• Expand SciML to higher-dimensional inputs

(temperature, diffusivities, time grids; multi-parameter, multi-physics, …)
• Improve convergence for complex, non-linear, multi-scale problems, the integration of data, 

and larger NN sizes
• Integration of SciML into engineering calculations/optimizations and process control (RTP)



Contact
—
Andreas Rosskopf
Department Head 
Modeling and Artificial Intelligence
Tel. +49 9131 761-153
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Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystraße 10
91058 Erlangen
http://www.iisb.fraunhofer.de

http://www.iisb.fraunhofer.de/
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MLP

Most common architecture: „multilayer perceptron“ (MLP) = „fully connected neural network“.

𝑥

𝑡

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

• Trainable: Weights on edges.

• Fixed non-linear activation function 𝜙 on nodes, e.g., 𝜙 =

tanh.
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mMLP

Extension of MLP: „modified MLP“ (mMLP). 

𝑥

𝑡

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

𝜙

• Learnable embedding of input coordinates that is used 
in all subsequent layers.

• Better approximation of multiplicative interactions 
between input coordinates.

• Inspired by attention mechanism.

Embedding

Embedding
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KAN

Alternative to MLPs: „Kolmogorov-Arnold Networks“ (KANs).

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

𝑥

𝑡

B-spline 
basis

+

+

• Learn non-linear functions in nodes via B-spline basis 
representation.

• Fixed sum operation on edges.
• Better interpretability of model by analyzing learned 

functions → allows to recover analytical solution 
formula.
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cKAN

Adaption of KANs: „Chebyshev KANs“ (cKANs).

𝐶Ni 𝑥, 𝑡

𝐶SiC 𝑥, 𝑡

𝐶C 𝑥, 𝑡

𝐶NiSi 𝑥, 𝑡

𝐶NiSi2
𝑥, 𝑡

𝑥

𝑡 +

+

• Use Chebyshev polynomial basis representation of 
learnable functions instead of b-splines. 

Chebyshev 
basis
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