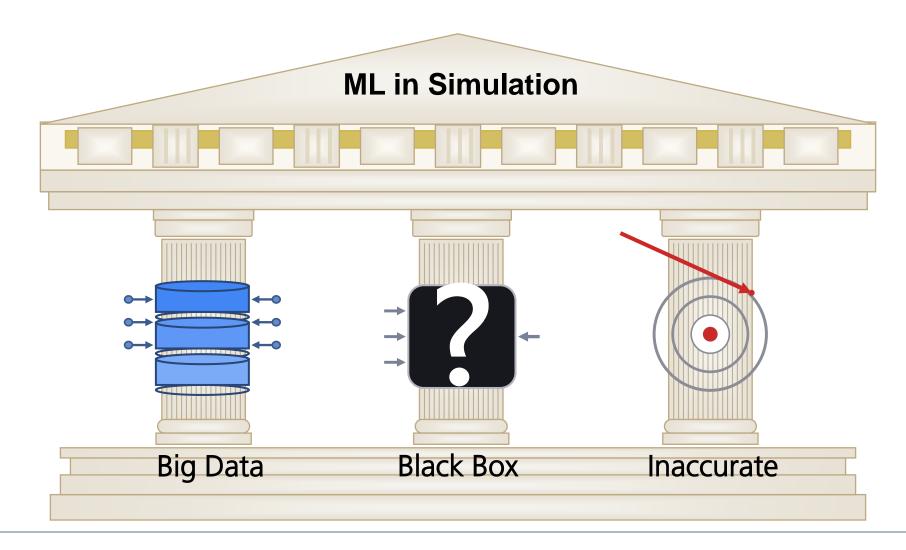
Scientific Machine Learning (SciML) – How the fusion of Al and physics is giving rise to promising simulation methodologies

SISPAD 2025, Grenoble
Andreas Rosskopf, and the Modeling- and Al-Department

Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB

Three myths about ML in simulation ...



Three techniques to combine ...

... to fulfill future engineering needs

Measurement & Experiment

- Provides highest-fidelity ground-truth data from reality
- Uncovers unknown effects and model gaps; foundation for calibration
- Essential for verification/validation; defines boundary conditions and material parameters.

(Numerical) Simulation

- Physics-based solvers (e.g., FEM, FDTD); established and validated.
- Robust with limited data: supports parameter sweeps, inter-/extrapolation, and DoF with few measurements
- Reproducible with built-in uncertainty quantification (e.g., sensitivities, MC).

ML (Al and Big Data)

- Automatic feature extraction from raw data even for complex, nonlinear physics
- Ultra-fast surrogate models for designspace exploration, optimization, and realtime control
- Highly parallelizable, adaptive via transfer and online learning; IP-protected

24 09 2025

Public

Three techniques to combine ...

... to fulfill future engineering needs

Measurement & Experiment

- Provides highest-fidelity ground-truth data from reality
- Uncovers unknown effects and model gaps; foundation for calibration
- Essential for verification/validation; defines boundary conditions and material parameters.

(Numerical) Simulation

- Physics-based solvers (e.g., FEM, FDTD); established and validated.
- Robust with limited data: supports parameter sweeps, inter-/extrapolation, and DoF with few measurements
- Reproducible with built-in uncertainty quantification (e.g., sensitivities, MC).

ML (Al and Big Data)

- Automatic feature extraction from raw data even for complex, nonlinear physics
- Ultra-fast surrogate models for designspace exploration, optimization, and realtime control
- Highly parallelizable, adaptive via transfer and online learning; IP-protected

Scientific Machine Learning (SciML)

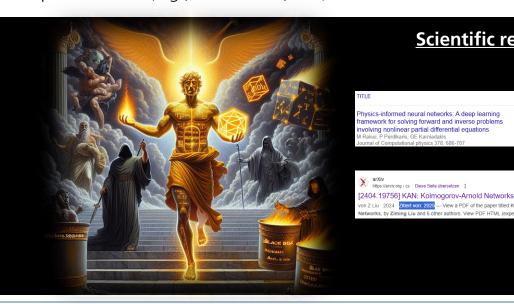
PINN: Physics-Informed Neural Network PIML: Physics-Informed Machine Learning

FNO: Fourier Neural Operator

DeepONet: Deep Operator Network

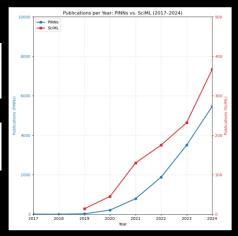
Neural ODE: Neural Ordinary Differential

Equations model



Public

Scientific relevance

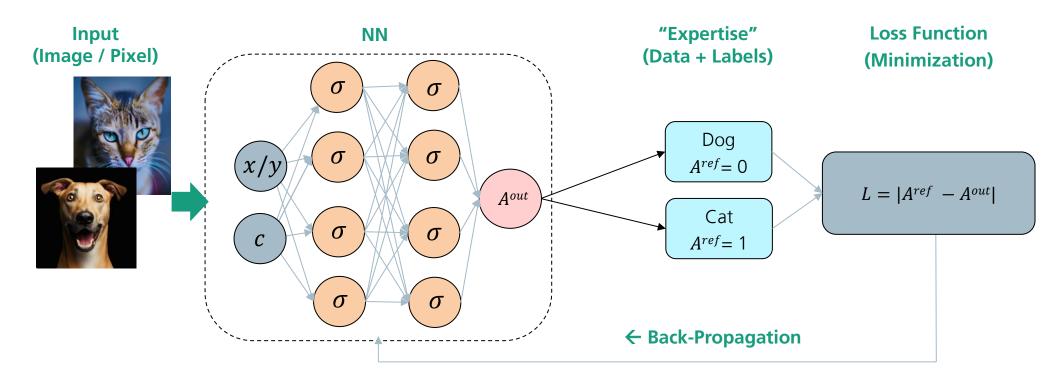


SciML Basis

Physics-Informed Neural Network – Supervised Learning

Problem: Image recognition "dog or cat"

Solution: Supervised Learning



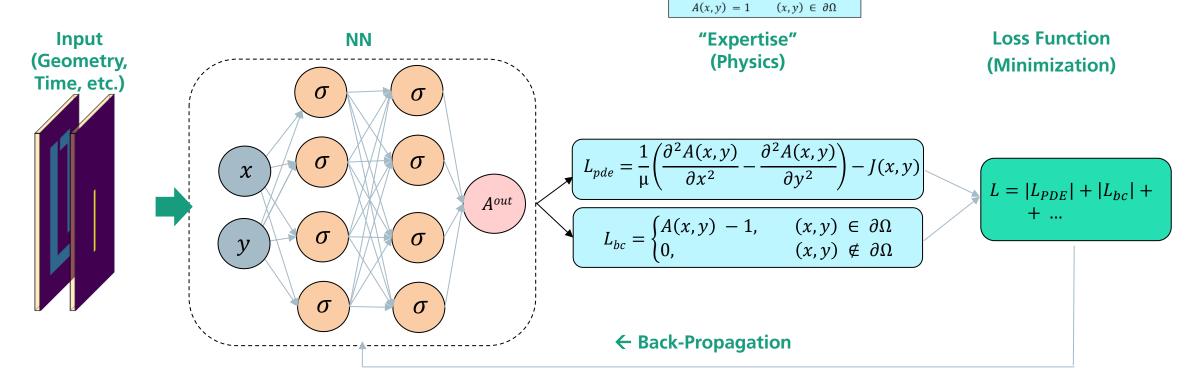
Public

SciML Basis

Physics-Informed Neural Network – Supervised Learning

Problem: Calculation of electromagnetic fields

Solution: Physics-Informed Learning



Public

 $\frac{1}{\mu} \left(\frac{\partial^2 A(x, y)}{\partial x^2} - \frac{\partial^2 A(x, y)}{\partial y^2} \right) = J(x, y)$

24.09.2025

1D Ni-SiC Silicidation Model

Formulation

SEMICONDUCTOR STRUCTURES, INTERFACES, AND SURFACES

Simulation of Interaction Between Nickel and Silicon Carbide during the Formation of Ohmic Contacts

O. V. Aleksandrov^a and V. V. Kozlovski^b

^aSt. Petersburg State Electrotechnical University "LÉTI," St. Petersburg, 197376 Russia ^e-mail: Aleksandr_ov@mail.ru ^bSt. Petersburg State Polytechnical University, St. Petersburg, 195251 Russia ^^e-mail: Kozlovski@tuexph.stu.neva.ru

Submitted November 6, 2008; accepted for publication November 17, 2008

Reaction-diffusion model for concentrations C_{Ni} , C_{SiC} , C_{C} , C_{NiSi} , C_{NiSi_2} depending on time $t \in [0, T]$, space $x \in [0, L]$.

Public

$$\partial_t C_{\text{Ni}} = \partial_x (D^* \partial_x C_{\text{Ni}}) - k_1 C_{\text{Ni}} C_{\text{SiC}},$$

$$\partial_t C_{\text{SiC}} = \partial_x (D^* \partial_x C_{\text{SiC}}) - k_1 C_{\text{Ni}} C_{\text{SiC}} - k_2 C_{\text{NiSi}} C_{\text{SiC}},$$

$$\partial_t C_{\rm C} = \partial_x (D^* \partial_x C_{\rm C}) + k_1 C_{\rm Ni} C_{\rm SiC} + k_2 C_{\rm NiSi} C_{\rm SiC},$$

$$\partial_t C_{\text{NiSi}} = k_1 C_{\text{Ni}} C_{\text{SiC}} + k_2 C_{\text{NiSi}} C_{\text{SiC}},$$

$$\partial_t C_{\text{NiSi}_2} = k_2 C_{\text{NiSi}} C_{\text{SiC}}$$

$$D^* = D_{\text{Ni}} \frac{c_{\text{SiC}} + c_{\text{C}} + c_{\text{NiSi}} + c_{\text{NiSi}_2}}{c_{\text{Ni}} + c_{\text{SiC}} + c_{\text{C}} + c_{\text{NiSi}} + c_{\text{NiSi}_2}},$$

 $\partial_x C(x,t) = 0$ for x = 0 and x = L for all components,

$$C_{Ni}(x, t = 0) = C_{0.Ni}$$
 for $0 \le x \le h$, $C_{Ni}(x, t = 0) = 0$ for $h \le x \le L$,

$$C_{\text{SiC}}(x, t = 0) = 0 \text{ for } 0 \le x \le h, \quad C_{\text{SiC}}(x, t = 0) = C_{0.\text{Si}} \text{ for } h \le x \le L,$$

$$C_{\rm C}(x,t=0) = C_{\rm NiSi}(x,t=0) = C_{\rm NiSi}(x,t=0) = 0.$$

Reaction constants:

$$k_1 = k_2 = 6 \cdot 10^{-5} \, \frac{\text{nm}^3}{\text{s}}.$$

Metal diffusivity:

$$D_{\rm Ni} = 6 \cdot 10^{-14} \frac{\rm cm^2}{\rm s}.$$

Total depth: L = 600 nm.

Total time: T = 1 h.

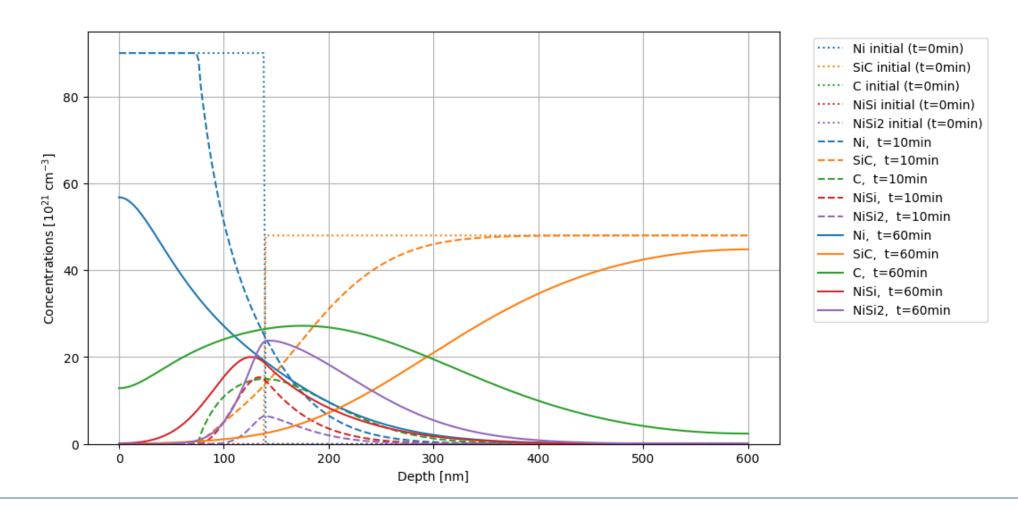
Heterodiffusion coefficient D^* .

Reflecting boundaries.

Initial metal thickness: h = 140 nm. and intrinsic concentrations: $C_{0,\mathrm{Ni}} = 9 \cdot 10^{22} \mathrm{cm}^{-3}$, $C_{0.\text{Si}} = 4.8 \cdot 10^{22} \text{cm}^{-3}$.

1D Ni-SiC Silicidation Model

Solution behaviour



Public

Physics-informed neural networks (PINNs)

Parameters (e.g., h) $C_{SiC}(x,t)$

 \mathcal{X}

 $C_{\rm C}(x,t)$

Solve this system by training a "physics-informed neural network" (PINM).

 $C_{\text{NiSi}}(x,t)$

Represent solution as a neural network.

 $\left(C_{\mathrm{NiSi}_{2}}(x,t)\right)$

Train it by using the problem's residuals evaluated at collocation points as loss function.

$$\mathcal{L} \coloneqq \frac{1}{N_{\mathrm{PDE}}} \sum_{j=1}^{N_{\mathrm{PDE}}} \left(-\partial_t C_{\mathrm{Ni}} + \partial_x \left(D^* \partial_x C_{\mathrm{Ni}} \right)^2 - k_I C_{\mathrm{Ni}} C_{\mathrm{SiC}} \right)^2 \Big|_{(x_j^{\mathrm{PDE}}, t_j^{\mathrm{PDE}})} \qquad \qquad \text{PDE loss for Ni.}$$

$$+ \frac{1}{N_{\mathrm{ic}}} \sum_{j=1}^{N_{\mathrm{ic}}} \left(C_{\mathrm{Ni}}(x_j^{\mathrm{ic}}, 0) - C_{0,\mathrm{Ni}} \cdot \mathbb{1}_{[0,h]}(x_j^{\mathrm{ic}}) \right)^2 \qquad \qquad \text{Initial condition for Ni.}$$

$$+ \frac{1}{N_{\mathrm{bc}}} \sum_{j=1}^{N_{\mathrm{bc}}} \left[\left(\partial_x C_{\mathrm{Ni}}(0, t_j^{\mathrm{bc}}) \right)^2 + \left(\partial_x C_{\mathrm{Ni}}(L, t_j^{\mathrm{bc}}) \right)^2 \right] + \dots \qquad \qquad \text{Boundary condition for Ni.}$$

• Extendable to a "physics-informed neural operator" (PINO).

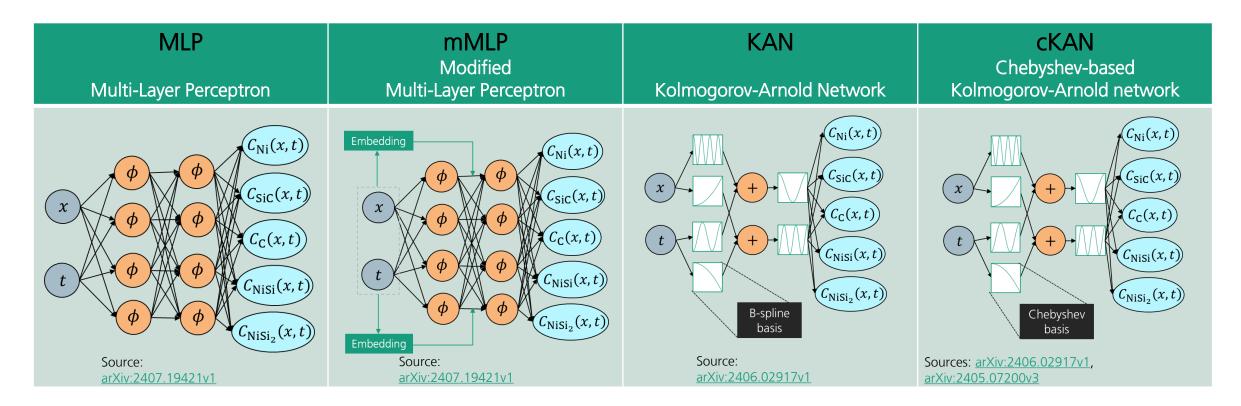
Fraunhofer IISB - Andreas Rosskopf

- → Make parameters (initial condition, model parameters like temperature, ...) part of neural network's input.
- → Arrive at fast to evaluate surrogate model that can, e.g., be used for optimization tasks.

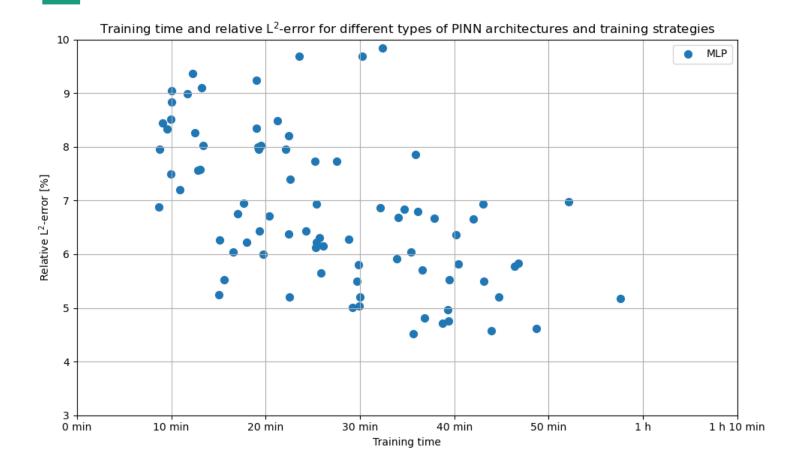
PINN Architectures

Overview

Four common architectures for the NN part inside the PINN:

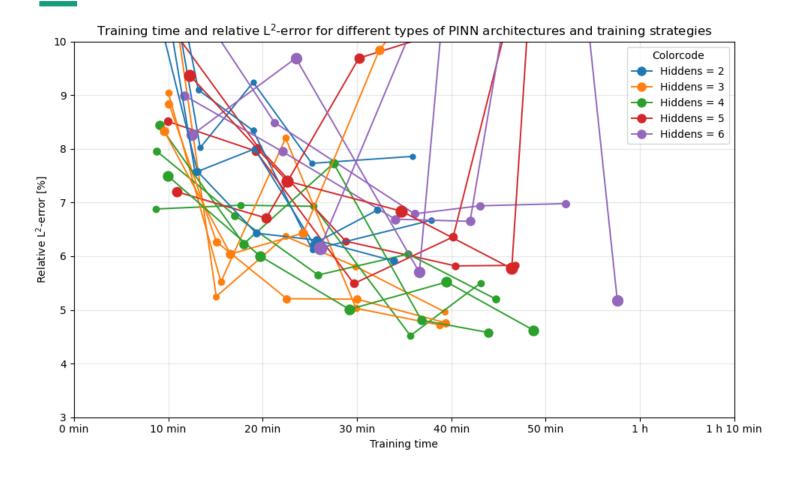


MLPs



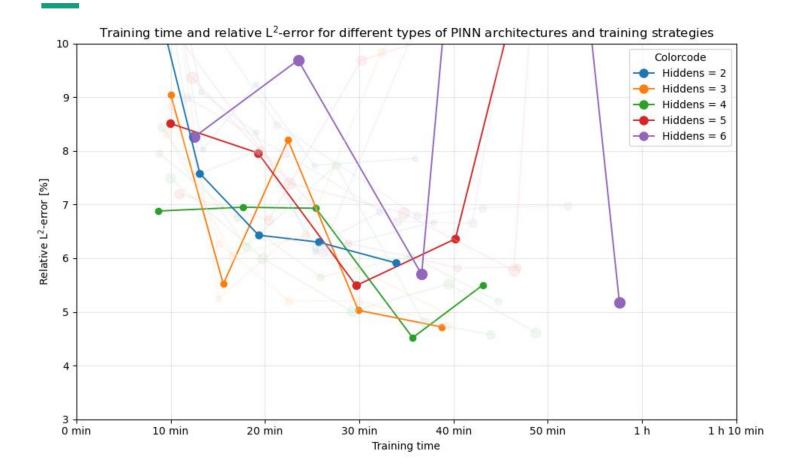
- 100 MLP trainings varying in the
 - amount of layers {2,3,4,5,6}
 - amount of neurons per layer {48,64,96,128}
 - amount of iterations
 {10k, 20k, 30k, 40k, 50k}
 (Adam optimizer incl. LR decay)

MLPs



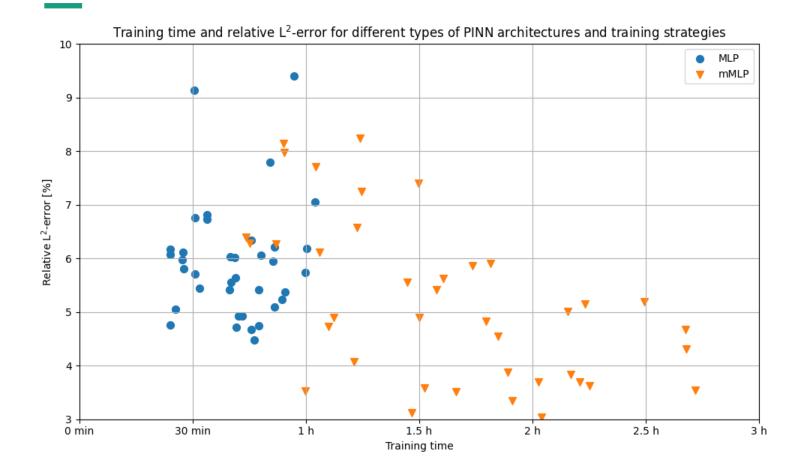
- 100 MLP trainings varying in the
 - amount of layers {2,3,4,5,6} layers
 - amount of neurons per layer {48,64,96,128}
 - amount of iterations
 {10k, 20k, 30k, 40k, 50k}
 (Adam optimizer incl. LR decay)
 - Clustering and colorcoding

MLPs



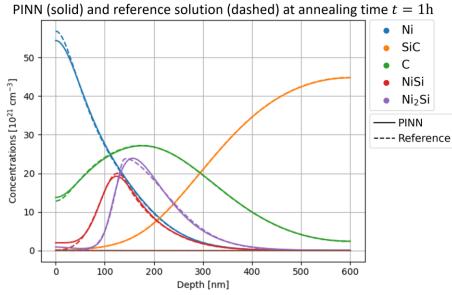
- 100 MLP trainings show ...
 - best setups with errors of 4%-5%
 - (unsteady) convergence over training (10k – 50k steps) for minor amount of hidden layers
 - overfitting for high(er) amount of hidden layers

mMLPs

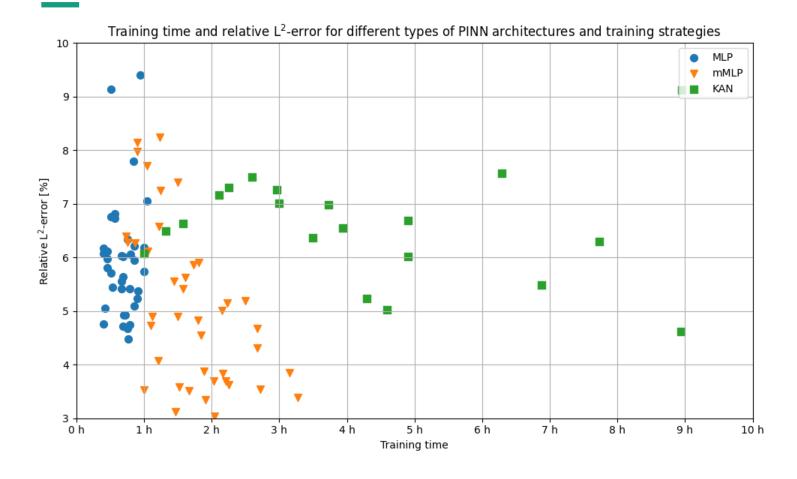


Fraunhofer IISB - Andreas Rosskopf

- Modified MLPs lead to lower error but require longer training time
- Best accuracy: $\sim 3.0 \%$.

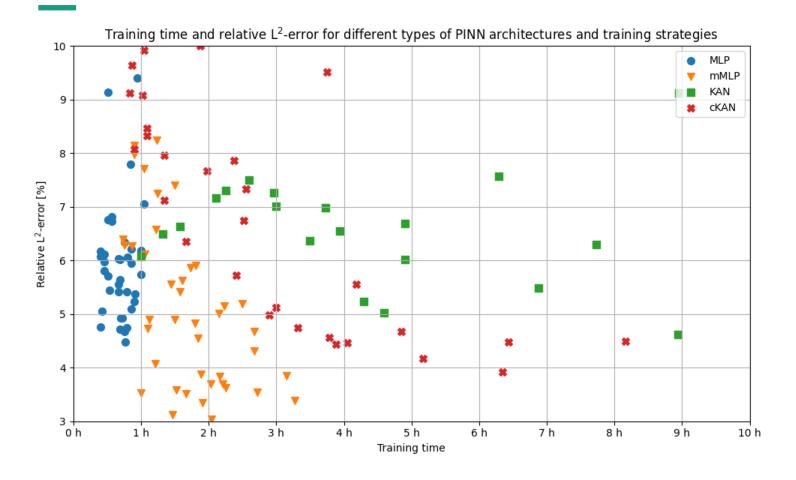


KANs



• KANs need a much longer train time and hardly reach MLP accuracy

cKANs



- KANs need a much longer train time and hardly reach MLP accuracy
- cKANs are faster and more stable to train and reach lower error than KANs, but did not beat mMLPs

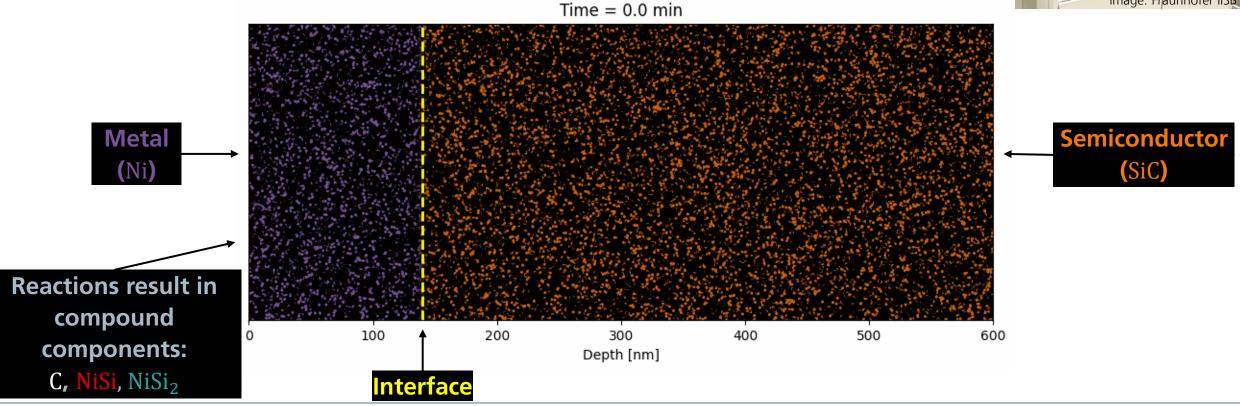
Takeaway:

- mMLP reach the lowest error
- (m)MLP reach the best efficiency (error vs. training time)
- Explainable (c)KAN strategies reach good results but require 2-3 times of the (m)MLP training time

Silicidation

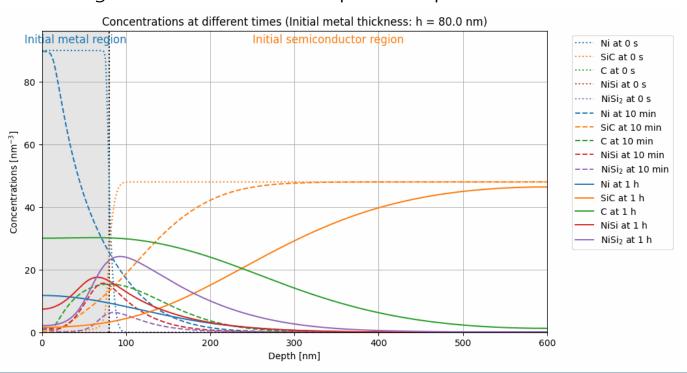
Apply RTP ("rapid thermal processing")

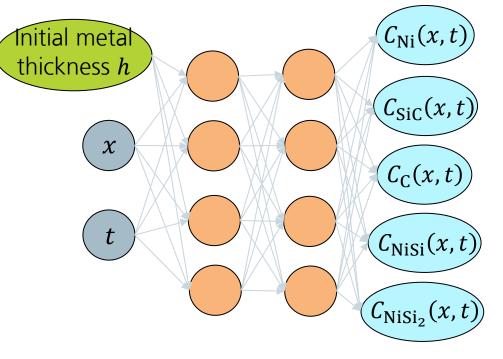
Visualisation of the 1D results in a 2D contact. (Follow-Up Tasks: Resistance calculation & optimization)



Extension to Parametric Model

- So far: Always considered fixed setting.
- Can be extended to "physics-informed neural operator", e.g., by making initial metal thickness part of input.





- Evaluation in general settings without needing to retrain model.
- Fast to evaluate surrogate model that can, e.g., be used in optimization pipelines.
- More details provided in the talk by Dr. Christopher Straub later!

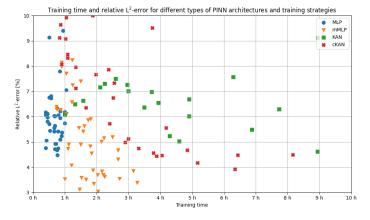
SciML Sum-Up

- Reference simulation:
 - Time-adaptive FDM solver PROMIS (developed by P. Pichler et al., written in Fortran) with spacial step size 2 nm
 - Simulation time (CPU): ∼ 5 seconds
- SciML PINN Training time for static setup
 - Training via DeepXDE using Pytorch on a Tesla Quadro RTX 5000
 - Training time: ~0.5h MLP, ~1h mMLP, 4h-7h KAN and 4h-9h cKAN
 - Inference: 1-2ms for 3 time-steps (for all architectures and the same for CPU / GPU)

- Training via DeepXDE using Pytorch on a Tesla V100
- Training time: 3h mMLP
- Inference: CPU 28ms for 3 time-steps and 121 thickness values (as in animation)
 - GPU 7ms for 3 time-steps and 121 thickness values (as in animation)

Parameteric Setup with 3 timesteps and 121 thickness values: Classic FDM: 10min

PINO: ~28ms (Inference on CPU)



Conclusion and outlook

Key takeaways

- SciML bridges simulation, ML (and measurement) to counter the myths:
 not inaccurate, not big-data-only, not a black box (phy-loss & KAN improves interpretability)
- PINNs solve the Ni–SiC reaction–diffusion PDE with reflecting boundaries;
 PINO extends to parametric surrogates (e.g., thickness h)
- mMLP PINNs delivered the best accuracy/efficiency
 cKAN was more stable than KAN but did not beat mMLP

Outlook

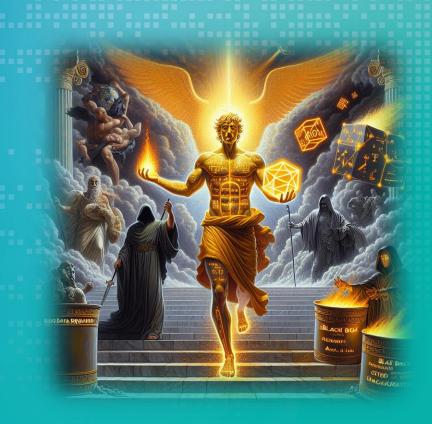
- Expand SciML to higher-dimensional inputs (temperature, diffusivities, time grids; multi-parameter, multi-physics, ...)
- Improve convergence for complex, non-linear, multi-scale problems, the integration of data, and larger NN sizes
- Integration of SciML into engineering calculations/optimizations and process control (RTP)

Contact

Andreas Rosskopf
Department Head
Modeling and Artificial Intelligence
Tel. +49 9131 761-153
andreas.rosskopf@iisb.fraunhofer.de

Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10
91058 Erlangen
http://www.iisb.fraunhofer.de

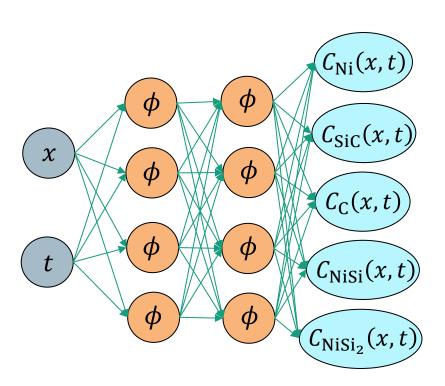
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB



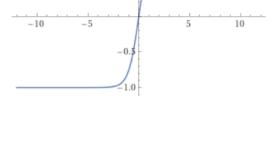
PINN Architectures

MLP

Most common architecture: "multilayer perceptron" (MLP) = "fully connected neural network".



- Trainable: Weights on edges.
- Fixed non-linear activation function ϕ on nodes, e.g., $\phi = \tanh$.



0.5

PINN Architectures mMLP

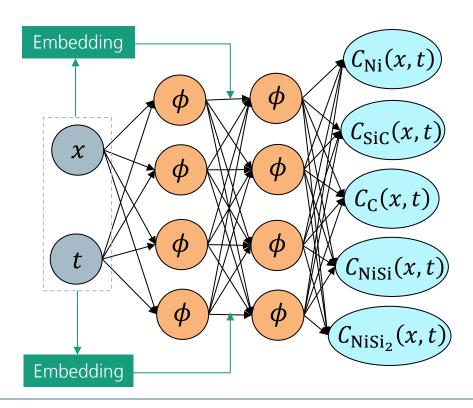
Methods and Algorithms for Scientific Computing

Understanding and Mitigating Gradient Flow Pathologies in Physics-Informed Neural Networks

Authors: Sifan Wang, Yujun Teng, and Paris Perdikaris 💿

AUTHORS INFO & AFFILIATIONS

Extension of MLP: "modified MLP" (mMLP).



- Learnable embedding of input coordinates that is used in all subsequent layers.
- Better approximation of multiplicative interactions between input coordinates.
- Inspired by attention mechanism.

PINN Architectures

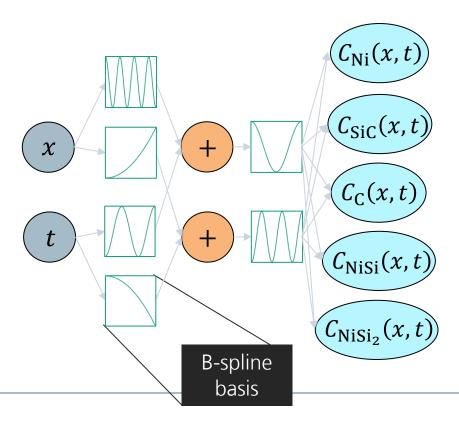
KAN

Alternative to MLPs: "Kolmogorov-Arnold Networks on Citations.

KAN: Kolmogorov–Arnold Networks

⁴ The NSF Institute for Artificial Intelligence and Fundamental Interactions

Published in April Ziming Liu^{1,4*} Yixuan Wang² Sachin Vaidya¹ Fabian Ruehle^{3,4} James Halverson^{3,4} Marin Soljačić^{1,4} Thomas Y. Hou² Max Tegmark^{1,4} ¹ Massachusetts Institute of Technology ² California Institute of Technology ³ Northeastern University



- Learn non-linear functions in nodes via B-spline basis representation.
- Fixed sum operation on edges.

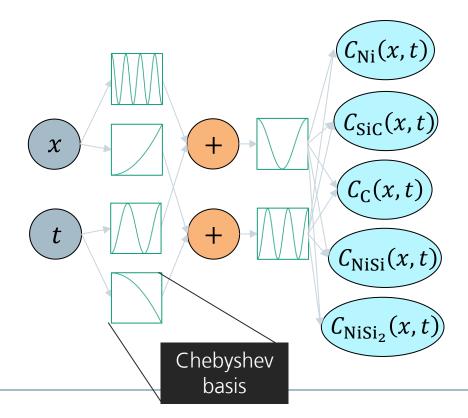
Public

Better interpretability of model by analyzing learned functions → allows to recover analytical solution formula.

PINN Architectures

cKAN

Adaption of KANs: "Chebyshev KANs" (cKA



Chebyshev Polynomial-Based Kolmogorov-Arnold Networks: An Efficient Architecture for Nonlinear Function Approximation

Sidharth SS¹, Gokul R¹, Anas K P¹, and Keerthana AR²

¹Indian Institute of Science Education and Research Mohali, India ²Indian Institute of Science Education and Research Thiruvananthapuram, India

May 2024

Use Chebyshev polynomial basis representation of learnable functions instead of b-splines.

