Effiziente Solarzellen: Georg-Kurlbaum-Preis 2011 für Nachwuchswissenschaftler vom Fraunhofer IISB

Textmeldung /

Für seine am Fraunhofer IISB in Erlangen durchgeführte Diplomarbeit zum Defekthaushalt in kristallinem Solar-Silizium ist der Nachwuchswissenschaftler Ludwig Stockmeier mit dem Georg-Kurlbaum-Preis 2011 ausgezeichnet worden. Durch seine Forschungsergebnisse lassen sich mit einem preiswerten Verfahren qualitativ bessere Siliziumkristalle und dadurch Solarzellen mit höheren Wirkungsgraden realisieren.

© Fraunhofer IISB
Ludwig Stockmeier mit der Urkunde zum Georg-Kurlbaum-Preis 2011 in der Kategorie Umwelt / Energie an seiner Kristallisationsanlage in einem Kristallzüchtungslabor am Fraunhofer IISB

Der Erlanger Student der Werkstoffwissenschaften konnte zeigen, dass sich bei der so genannten gerichteten Erstarrung durch eine optimierte Anordnung der eingesetzten Startkeime die Materialeigenschaften von multikristallinem Photovoltaik-Silizium entscheidend verbessern lassen. Da die Forschungsergebnisse – ganz im Sinne der Kurlbaum-Stiftung – einen Beitrag zur Erhaltung und Verbesserung der Umwelt leisten, wurde Ludwig Stockmeier der Georg-Kurlbaum-Preis 2011 in der Kategorie Umwelt / Energie verliehen.

Der Markt für Solarzellen wird dominiert – von Zellen auf Basis von so genanntem monokristallinen und multikristallinen Silizium. Die beiden Materialien unterscheiden sich voneinander durch die Herstellungskosten und die erzielbaren Wirkungsgrade der daraus hergestellten Solarzellen. Monokristallines Silizium führt zu höheren Zellwirkungsgraden von etwa 19%, ist jedoch teuer aufgrund eines aufwendigen Herstellungsverfahrens, bei dem Einkristalle aus einer Siliziumschmelze gezogen werden. Multikristallines Silizium lässt sich kostengünstiger nach dem Prinzip der gerichteten Erstarrung herstellen, indem das Silizium in einem Tiegel komplett aufgeschmolzen und anschließend durch eine kontrollierte Wärmeabfuhr von unten nach oben erstarrt wird. Dieses Material weist jedoch – bedingt durch den Herstellungsprozess – Kristallfehler in Form von Versetzungen und Korngrenzen auf, die den Wirkungsgrad der daraus gefertigten Solarzellen heute auf etwa 17% limitieren. Um die Wirkungsgradlücke zwischen dem billigeren, aber schlechteren multikristallinen Silizium und dem teureren, aber besseren monokristallinen Silizium zu schließen, ist es notwendig, multikristallines Material mit möglichst großen Körnern, d.h. mit geringen Korngrenzenlängen und einer Versetzungsdichte von unter 1 • 104 cm-2 herzustellen.

Einen vielversprechender Weg, dieses Ziel zu erreichen, ist die sogenannte Keimvorgabe. Dabei werden bei der Herstellung der Kristalle im Schmelztiegel unterhalb des aufzuschmelzenden Siliziums monokristalline Siliziumkeime auf den Tiegelboden gelegt. Die Prozessführung beim Herstellungsverfahren wird nun so modifiziert, dass zwar der Rohstoff, nicht aber die Keime aufschmelzen. Dadurch wird erreicht, dass bei der anschließenden gerichteten Erstarrung des Siliziums die Struktur der monokristallinen Keime übernommen und somit die Korngrenzenlänge und die Versetzungsdichte reduziert werden. Das Problem ist jedoch, dass derzeit keine monokristallinen Keime verfügbar sind, um auch Tiegel mit einer Grundfläche von 1 • 1 m2, wie sie in der industriellen Produktion Verwendung finden, komplett mit einem einzigen Keim zu belegen. Deshalb müssen mehrere Keime nebeneinander in den Tiegelboden gelegt werden. An den Nahtstellen dieser Keime können wiederum Kristallfehler entstehen, die zu Korngrenzen und Versetzungen im erstarrten Material führen und sich nachteilig auf die Solarzelleneigenschaften auswirken.

Hier setzt die Diplomarbeit von Ludwig Stockmeier an, die am Fraunhofer IISB in der Abteilung Kristallzüchtung unter Hochschulbetreuung von Prof. Dr. Peter Wellmann vom Lehrstuhl für Materialien der Elektronik und Energietechnik der Friedrich-Alexander-Universität Erlangen-Nürnberg durchgeführt wurde. Als Student der Werkstoffwissenschaften untersuchte Herr Stockmeier systematisch, welche Auswirkungen die Vorgabe mehrerer Keime auf die Entstehung struktureller Defekte, wie Korngrenzen und Versetzungen, hat und wie sich deren Entstehung und Ausbreitung vermindern lässt. Dazu stellte er in einer Laborkristallzüchtungsanlage Siliziumkristalle nach dem Prinzip der gerichteten Erstarrung unter Vorgabe mehrerer Keime her. Dabei wurden die kristallographischen Orientierungsbeziehungen der Keime zueinander und in Wachstumsrichtung variiert. Ein weiterer wichtiger Parameter war die Variation des Abstandes zwischen den Keimen, im Folgenden Spaltbreite genannt.

Der Preisträger konnte zeigen, dass bei bestimmten Orientierungsbeziehungen der Keime untereinander der zwischen den Keimen befindliche Spalt nahezu defektfrei zuwächst. Die Kristallfehler, die sich im Spalt bilden, können sich – auch wenn es nur wenige sind – im weiteren Erstarrungsprozess jedoch ausbreiten und vervielfachen und somit die Materialeigenschaften erheblich nachteilig beeinflussen. Die Ausbreitung der Kristallfehler über die Kristallhöhe ist dabei sehr stark abhängig von der Spaltbreite und der Keimorientierung. Werden spezielle Orientierungsbeziehungen zwischen den Keimen eingestellt und wird die Spaltbreite optimal gewählt, kann die Bildung und Ausbreitung der Kristallfehler deutlich reduziert werden. Dadurch wurde eine wichtige Grundlage geschaffen, um durch eine gezielte Vorgabe von Keimen am Tiegelboden die Qualität des Siliziums bezüglich der den Wirkungsgrad-limitierenden Faktoren im industriellen Maßstab entscheidend zu verbessern.

Last modified: